
FIRM: An Intelligent Fine-grained Resource Management
Framework for SLO-oriented Microservices

Haoran Qiu*, Subho S. Banerjee, Saurabh Jha, Zbigniew T. Kalbarczyk, Ravishankar K. Iyer

DEPEND Research Group
University of Illinois at Urbana-Champaign

* Presenter

From Monolithic to Microservices
• Microservice architecture growing in popularity
• A set of loosely-coupled, self-concerned “micro” services

• Scalability, fault isolation, flexibility, etc.

• Scale and complexity are increasing
• Increasing in scale, e.g. 700+ (Netflix in ’17), 1000+ (Uber in ’19)

• Performance guarded by service level objectives (SLOs)
• Violation leads to financial loss (100ms increase converted to $0.7 billion loss in Amazon sales (Q4 ’18)

2

Uber in 2019

Function A

Function B

Function C

Function D

Main()

Monolithic Binary

Client

Service A

Gateway
Microservices

Service B

Service C
Service D

Performance Predictability in Microservices is Hard
• Challenge #1: Difficulty in isolating root causes of SLO violations

• Complex inter-microservice dependencies cascading SLO violations

• Challenge #2: Inability in capturing shared-resource contention at a lower-level
• Interference over shared resources (e.g. LLC, memory bandwidth, network devices)

• Challenge #3: Difficulty in taking the right action to mitigate SLO violations
• High fidelity performance models/scheduling heuristics -> significant human-effort and training
• Frequent service updates/migrations -> recurring effort for model reconstruction and re-training

3

Main
Memory

Shared L3 Cache
Multicore
Processor

Host OS Kernel

Container Engine

Container 1 Container 2

I/O
Devices

Network
Devices

I/O
System 0 50 100 150 200 250 300

Time (s)

400

800

99
%

ile
La

te
nc

y
(m

s)

0

200

400

C
P
U

U
ti
l

(%
)

50
100
150

P
er

-c
or

e
D

R
A
M

A
cc

es
s with FIRM without FIRM

Undesired SLO Violations

FIRM As The Cure
• Two-level machine learning based SLO violation mitigation framework

• Challenge #1 – Detection and localization of SLO violations to individual microservices
• Challenge #2 & #3 – Estimation of resources in contention and dynamic resource reprovision
• Benefits: Improved interpretability and less training time

• Designed, developed, and deployed in a 15-node Kubernetes cluster

• Outperforms Kubernetes autoscaling by up to 16x in reducing SLO violations

4

Kubelet

Proxy

Docker

Container
Container

Pod

Worker
Node

Clients

Master Node

Scheduler

API
Server

Controller
Manager

etcd

FIRM
Measurements

Actions

Support Vector Machine (SVM)-
based State Inference

Reinforcement Learning (RL)-
based SLO Violation Mitigation

FIRM’s Two-level ML Model
Container
Container

Pod

Insight 1: Dynamic Behavior of Critical Paths

400 600

Latency (ms)

0.00

0.25

0.50

0.75

1.00

C
D

F

Max-CP

Min-CP

400 500 600 700

Latency (ms)

0.00

0.25

0.50

0.75

1.00

C
D

F

Max-CP

Min-CP

600 800 1000

Latency (ms)

0.00

0.25

0.50

0.75

1.00

C
D

F

Max-CP

Min-CP

300 400 500 600

Latency (ms)

0.00

0.25

0.50

0.75

1.00

C
D

F

Max-CP

Min-CP

• Critical path defines the longest path in
execution

• Detection of critical paths helps reveal the
bottleneck of performance

• Critical path is not static, but dynamically
changing based on the performance of
individual service instances
• Different type of underlying shared-resource

contention
• Different degree of sensitivity to the same

type of interference

• It’s important to capture the changes at
runtime, and make runtime decision

Social Network Media Service

Train Ticket Booking Hotel Reservation

5

99th

percentile

99th

percentile

1.3x 1.5x

2x 1.6x

Insight 2: Significance of Latency Variability
• Microservices with larger latency are not necessarily the root causes of SLO violations

• Processing time with higher variance makes it harder to obtain low tail latency

• Variability represents opportunities for reducing latency

100 125 150

Total Latency (ms)

0.00

0.25

0.50

0.75

1.00

C
D

F Before

Text

Compose

40 60 80 100

Individual Latency (ms)

0.00

0.25

0.50

0.75

1.00

C
D

F

Text

Compose

Social Network – Composing Post Request

6

High Variance High Median

Better

Span Graph

(Execution)

Service Dependence

State Inference (1)
• Real-time observability on request execution

provided by end-to-end distributed tracing

7

Service A

Gateway
Microservices

Service B

Service C
Service D

Gateway
Service A

Service B
Service C

Service D

Performance Anomaly Injector

Microservices Deployment & Service Dependency Graph

Nginx
PHP-FPM

Load
Balancer

Tracing Module

Microservice
Instance

Replica Set

Tracing
Coordinator

• Auto-labeled training data driven by the
performance anomaly injection

State Inference (3)
• Real-time observability on request execution

provided by end-to-end distributed tracing

• Auto-labeled training data driven by the
performance anomaly injection

• SLO violation detection and narrow down via
critical path analysis

• SVM-based critical component localization
• Given individual latency vector Ti, and end-to-

end latency vector TCP

• Relative importance defined as the Pearson
correlation coefficient between Ti and TCP

• Congestion intensity defined as 99-th
percentile value divided by median value of Ti

Ex
tra

ct
or

Critical Path Extraction

Critical Instance Extraction

Execution
History Graph

Telemetry
Data

Candidates
cr i t i cal Component ()

l ongest Pat h()Critical
Paths

Performance Anomaly Injector

Microservices Deployment & Service Dependency Graph

Nginx
PHP-FPM

Load
Balancer

Tracing Module

Microservice
Instance

Replica Set

Tracing
Coordinator

8

Insight 3: No Common Mitigation Policy for All
• SLO violation mitigation policies vary with applications, user loads, and the types of resource

in contention

• Designing optimal resource provisioning strategy is intractable, just like scheduling problems
• Modeling complexity: Tetris [SIGCOMM ’14], Jokey [EuroSys ’12]
• Placement constraints: TetriSched [EuroSys ’16], device placement [NIPS ’17]
• Data locality: Delayed scheduling [EuroSys ’10], SWAG [SoCC ’15]
• …

250 500 750 1000 1250 1500 1750 2000 2250

Load (# requests/s)

104

106

108

104

106

108

Scale Up Scale Out CPU Memory

E
nd

-t
o-

E
nd

La
te

nc
y

(u
s)

Social
Network

Train Ticket
Booking

9

250 500 750 1000 1250 1500 1750 2000 2250

Load (# requests/s)

105

107

105

107

Scale Up Scale Out CPU Memory

E
nd

-t
o-

E
nd

La
te

nc
y

(u
s)

Why not human-driven performance engineering?
• No “one-size-fits-all” solution for the online decision problem

• Best algorithm depends on specific workload and system

• Human-driven performance engineering
• Assume a simple system model
• Produce some clever heuristics
• Painstakingly test & tune the heuristics in practice
• Redo the above steps

• Is there a way to work around human-generated heuristics? Yes

10

OR

Microservices Resources

• RL-based SLO violation mitigation
• Assume a random scheduling policy
• Perceive states and receive rewards
• Optimize the policy based on the rewards
• Loop continues until convergence

SLO Violation Mitigation (1)
• Observability improved through online

distributed tracing

• Auto-labeled training data and RL online
learning driven by the performance anomaly
injector

• SLO violation detection and localization via
critical path analysis

• SVM-based critical component extraction

• SLO violation mitigation based on
reinforcement learning
• Identifies low-level resource contention
• Estimates the right amount to reprovision

R
L-based R

esource
Estim

ator R
e-allocation

Actions

Performance
Counters

D
eploym

ent M
odule

CPU LLC Memory

I/O Network Replicas

Controlled Resources

Ex
tra

ct
or

Critical Path Extraction

Critical Instance Extraction

Execution
History Graph

Telemetry
Data

Candidates
cr i t i cal Component ()

l ongest Pat h()Critical
Paths

Performance Anomaly Injector

Microservices Deployment & Service Dependency Graph

Nginx
PHP-FPM

Load
Balancer

Tracing Module

Microservice
Instance

Replica Set

Tracing
Coordinator

11

RL Agent

CPU

Utilization

Memory

Bandwidth

LLC

Bandwidth

LLC

Capacity

Disk I/O

Bandwidth

Network

Bandwidth

Microservices
Managed by FIRM

Actions (at)

Performance & Resource Measurements

States (st)

Rewards (rt)
SLO

Utilization

Actor

Critic
Vt

SLO

Violation

Arrival

Rate

SLO Violation Mitigation (2)
• An RL-based resource estimation agent that learns to make provisioning decisions directly

from experience

• Optimizes objectives end-to-end:
• Minimize SLO violation
• Maximize resource utilization efficiency

𝑟 𝑡 = 𝛼 % 𝑆𝑀! % ℛ + (1 − 𝛼) %.
"

|ℛ|
𝑅𝑈!"/𝑅𝐿!"

𝑆𝑀! =
𝐿𝑎𝑡𝑒𝑛𝑐𝑦%&'
𝐿𝑎𝑡𝑒𝑛𝑐𝑦!

(SLO maintenance)

Resource utilization
of 𝑖 at time 𝑡

Resource limit
of 𝑖 at time 𝑡

12

Mitigate SLO
Violation Fast

Avoid Over-
provisioning

Multilevel ML Training

13

K8S Cluster

Workload
Generators

FIRM’s
RL Agent

Reinforcement
Learning Training

Generate experience
data

Anomaly Injector

FIRM’s SVM Model

Feature (X) Label (y)

Labeling

Multilevel ML Training

14

K8S Cluster

Workload
Generators

FIRM’s
RL Agent

Reinforcement
Learning Training

Generate experience
data

Anomaly Injector

FIRM’s SVM Model

Feature (X) Label (y)

Labeling

9x

2x

Evaluation
• Implemented and deployed FIRM on a Kubernetes cluster of 15 physical nodes

• Running microservices benchmarks from DeathStarBench [1] and TrainTickets [2] driven by
open-loop workload generators

• Training and experiments driven by performance anomaly injection

• Comparison targets include Kubernetes autoscaling [3] and an additive increase multiplicative
decrease (AIMD)-based method [4]

[1] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, et al. An
opensource benchmark suite for microservices and their hardware-software implications for cloud & edge systems. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages and Operating Systems, pages 3–18, 2019.

[2] Train Ticket - A train-ticket booking system based on microservice architecture. https://github.com/ FudanSELab/train-ticket.

[3] Autoscaling in Kubernetes. https:// kubernetes.io/blog/2016/07/autoscalingin-kubernetes/

[4] Sonja Stüdli, M. Corless, Richard H. Middleton, and Robert Shorten. On the modified AIMD algorithm for distributed resource management with saturation of
each user’s share. In Proceedings of 2015 54th IEEE Conference on Decision and Control (CDC), pages 1631–1636. IEEE, 2015.

15

Results

2000 4000 6000 8000 10000 12000
(a) End-to-end Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Better

0 100 200 300 400 500
(b) Requested CPU Limit %

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Better

0 2000 4000 6000 8000 10000 12000
(c) # of Dropped Requests

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Better

FIRM (Transferred Single-RL) FIRM (Multi-RL) AIMD K8S Auto-scaling

16

• Reduces the SLO violation mitigation time by up to 9×
compared with AIMD

• Reduces the average tail latencies by up to 6-11×

• Reduces the overall average requested CPU limit by 29-62%

• Reduces the number of dropped/timed out requests by up
to 8x

99th

percentile

6x

11x

9x

2x

Conclusion
• FIRM uses SVM-based critical component extraction to localize at runtime root cause

microservice instances for SLO violations

• FIRM uses RL to generate workload-specific mitigation policies, optimized to estimate
resources in contention and provide re-provision actions

• FIRM leverages the two-level ML model structure to improve interpretability and save training
time

• FIRM outperforms Kubernetes auto-scalers and AIMD-based methods

17

Thank you!
Check out the full paper for more details!

(haoranq4@Illinois.edu)

18

