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From Monolithic to Microservices
• Microservice architecture growing in popularity
• A set of loosely-coupled, self-concerned “micro” services

• Scalability, fault isolation, flexibility, etc.

• Scale and complexity are increasing
• Increasing in scale, e.g. 700+ (Netflix in ’17), 1000+ (Uber in ’19)

• Performance guarded by service level objectives (SLOs) 
• Violation leads to financial loss (100ms increase converted to $0.7 billion loss in Amazon sales (Q4 ’18)
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Performance Predictability in Microservices is Hard
• Challenge #1: Difficulty in isolating root causes of SLO violations

• Complex inter-microservice dependencies cascading SLO violations

• Challenge #2: Inability in capturing shared-resource contention at a lower-level
• Interference over shared resources (e.g. LLC, memory bandwidth, network devices)

• Challenge #3: Difficulty in taking the right action to mitigate SLO violations
• High fidelity performance models/scheduling heuristics -> significant human-effort and training
• Frequent service updates/migrations -> recurring effort for model reconstruction and re-training
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FIRM As The Cure
• Two-level machine learning based SLO violation mitigation framework

• Challenge #1 – Detection and localization of SLO violations to individual microservices
• Challenge #2 & #3 – Estimation of resources in contention and dynamic resource reprovision
• Benefits: Improved interpretability and less training time

• Designed, developed, and deployed in a 15-node Kubernetes cluster

• Outperforms Kubernetes autoscaling by up to 16x in reducing SLO violations
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Insight 1: Dynamic Behavior of Critical Paths
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• Critical path defines the longest path in 
execution

• Detection of critical paths helps reveal the 
bottleneck of performance

• Critical path is not static, but dynamically
changing based on the performance of 
individual service instances
• Different type of underlying shared-resource 

contention
• Different degree of sensitivity to the same 

type of interference

• It’s important to capture the changes at 
runtime, and make runtime decision
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Insight 2: Significance of Latency Variability
• Microservices with larger latency are not necessarily the root causes of SLO violations

• Processing time with higher variance makes it harder to obtain low tail latency

• Variability represents opportunities for reducing latency
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Span Graph

(Execution)

Service Dependence

State Inference (1)
• Real-time observability on request execution 

provided by end-to-end distributed tracing
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State Inference (3)
• Real-time observability on request execution 

provided by end-to-end distributed tracing

• Auto-labeled training data driven by the 
performance anomaly injection

• SLO violation detection and narrow down via 
critical path analysis

• SVM-based critical component localization
• Given individual latency vector Ti, and end-to-

end latency vector TCP

• Relative importance defined as the Pearson 
correlation coefficient between Ti and TCP

• Congestion intensity defined as 99-th 
percentile value divided by median value of Ti
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Insight 3: No Common Mitigation Policy for All
• SLO violation mitigation policies vary with applications, user loads, and the types of resource 

in contention

• Designing optimal resource provisioning strategy is intractable, just like scheduling problems
• Modeling complexity: Tetris [SIGCOMM ’14], Jokey [EuroSys ’12]
• Placement constraints: TetriSched [EuroSys ’16], device placement [NIPS ’17]
• Data locality: Delayed scheduling [EuroSys ’10], SWAG [SoCC ’15]
• …
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Why not human-driven performance engineering?
• No “one-size-fits-all” solution for the online decision problem

• Best algorithm depends on specific workload and system

• Human-driven performance engineering
• Assume a simple system model
• Produce some clever heuristics
• Painstakingly test & tune the heuristics in practice
• Redo the above steps 

• Is there a way to work around human-generated heuristics? Yes
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OR

Microservices Resources

• RL-based SLO violation mitigation
• Assume a random scheduling policy
• Perceive states and receive rewards
• Optimize the policy based on the rewards
• Loop continues until convergence



SLO Violation Mitigation (1)
• Observability improved through online 

distributed tracing

• Auto-labeled training data and RL online 
learning driven by the performance anomaly 
injector

• SLO violation detection and localization via 
critical path analysis

• SVM-based critical component extraction

• SLO violation mitigation based on 
reinforcement learning
• Identifies low-level resource contention
• Estimates the right amount to reprovision
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RL Agent
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SLO Violation Mitigation (2)
• An RL-based resource estimation agent that learns to make provisioning decisions directly 

from experience

• Optimizes objectives end-to-end:
• Minimize SLO violation
• Maximize resource utilization efficiency
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Multilevel ML Training
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Multilevel ML Training
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Evaluation
• Implemented and deployed FIRM on a Kubernetes cluster of 15 physical nodes

• Running microservices benchmarks from DeathStarBench [1] and TrainTickets [2] driven by 
open-loop workload generators

• Training and experiments driven by performance anomaly injection

• Comparison targets include Kubernetes autoscaling [3] and an additive increase multiplicative 
decrease (AIMD)-based method [4]

----
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Results

2000 4000 6000 8000 10000 12000
(a) End-to-end Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Better

0 100 200 300 400 500
(b) Requested CPU Limit %

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Better

0 2000 4000 6000 8000 10000 12000
(c) # of Dropped Requests

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Better

FIRM (Transferred Single-RL) FIRM (Multi-RL) AIMD K8S Auto-scaling

16

• Reduces the SLO violation mitigation time by up to 9×
compared with AIMD

• Reduces the average tail latencies by up to 6-11×

• Reduces the overall average requested CPU limit by 29-62%

• Reduces the number of dropped/timed out requests by up 
to 8x
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Conclusion
• FIRM uses SVM-based critical component extraction to localize at runtime root cause 

microservice instances for SLO violations

• FIRM uses RL to generate workload-specific mitigation policies, optimized to estimate 
resources in contention and provide re-provision actions

• FIRM leverages the two-level ML model structure to improve interpretability and save training 
time

• FIRM outperforms Kubernetes auto-scalers and AIMD-based methods
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Thank you!
Check out the full paper for more details!

(haoranq4@Illinois.edu)
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