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From Monolithic to Microservices

Microservice architecture growing in popularity

A set of loosely-coupled, self-concerned “micro” services
 Scalability, fault isolation, flexibility, etc.

Scale and complexity are increasing
* Increasing in scale, e.g. 700+ (Netflix in ’17), 1000+ (Uber in ’19)

Performance guarded by service level objectives (SLOs)
* Violation leads to financial loss (100ms increase converted to $0.7 billion loss in Amazon sales (Q4 ’18)
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Performance Predictability in Microservices is Hard

a Challenge #1: Difficulty in isolating root causes of SLO violations
* Complex inter-microservice dependencies cascading SLO violations

a Challenge #2: Inability in capturing shared-resource contention at a lower-level
* Interference over shared resources (e.g. LLC, memory bandwidth, network devices)

G Challenge #3: Difficulty in taking the right action to mitigate SLO violations
 High fidelity performance models/scheduling heuristics -> significant human-effort and training
* Frequent service updates/migrations -> recurring effort for model reconstruction and re-training
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& Challenge #2 & #3 — Estimation of resources in contention and dynamic resource reprovision
® Benefits: Improved interpretability and less training time

FIRM As The Cure

* Two-level machine learning based SLO violation mitigation framework
& Challenge #1 — Detection and localization of SLO violations to individual microservices

* Designed, developed, and deployed in a 15-node Kubernetes cluster

* Outperforms Kubernetes autoscaling by up to 16x in reducing SLO violations

FIRM’s Two-level ML Model

Support Vector Machine (SVM)-
based State Inference

Reinforcement Learning (RL)-
based SLO Violation Mitigation
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: Dynamic Behavior of Critical Paths

* Critical path defines the longest path in
execution

Detection of critical paths helps reveal the
bottleneck of performance

Critical path is not static, but dynamically
changing based on the performance of
individual service instances

 Different type of underlying shared-resource
contention

 Different degree of sensitivity to the same
type of interference

It’s important to capture the changes at
runtime, and make runtime decision
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: Significance of Latency Variability

* Microservices with larger latency are not necessarily the root causes of SLO violations
* Processing time with higher variance makes it harder to obtain low tail latency

* Variability represents opportunities for reducing latency

High Variance High Median

1.00 N / 1.00

L, 0751 \ /O L 0757 @W\)/%j:’;ore
8 0.50 7 Text 8 0.50 1 Q‘G/ Text
0.25 1 =>&= Compose 0.25 1 C =>&= Compose
0.00 T T A‘{I,\ T 0.00 - T T
40 60 80 100 100 125 150
Individual Latency (ms) Total Latency (ms)

Social Network — Composing Post Request



State Inference (1)

* Real-time observability on request execution
provided by end-to-end distributed tracing

Tracing Module
Microservice
C) Instance

' Replica Set

* Auto-labeled training data driven by the
performance anomaly injection
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State Inference (3)

Real-time observability on request execution
provided by end-to-end distributed tracing

Auto-labeled training data driven by the
performance anomaly injection

SLO violation detection and narrow down via
critical path analysis

SVM-based critical component localization

* Given individual latency vector T;, and end-to-
end latency vector T¢p

* Relative importance defined as the Pearson
correlation coefficient between T; and T

* Congestion intensity defined as 99-th
percentile value divided by median value of T;
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Insight 3: No Common Mitigation Policy for All

* SLO violation mitigation policies vary with applications, user loads, and the types of resource
in contention

* Designing optimal resource provisioning strategy is intractable, just like scheduling problems
* Modeling complexity: Tetris [SIGCOMM ’14], Jokey [EuroSys ’12]
* Placement constraints: TetriSched [EuroSys ’16], device placement [NIPS ’17]
* Data locality: Delayed scheduling [EuroSys *10], SWAG [SoCC "15]
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Why not human-driven performance engineering?

* No “one-size-fits-all”’ solution for the online decision problem
* Best algorithm depends on specific workload and system

* HPQan-driven performance engineering SLO violation mitigation
* Assume a simple system model * Assume a random scheduling policy
* Produce some clever heuristics > * Perceive states and receive rewards
 Painstakingly test & tune the heuristics in practice * Optimize the policy based on the rewards
* Redo the above steps U * Loop continues until convergence U

* Is there a way to work around human-generated heuristics? Yes
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SLO Violation Mitigation (1)

Observability improved through online
distributed tracing

Auto-labeled training data and RL online
learning driven by the performance anomaly
injector

SLO violation detection and localization via
critical path analysis

SVM-based critical component extraction

SLO violation mitigation based on
reinforcement learning

* ldentifies low-level resource contention
* Estimates the right amount to reprovision
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* Optimizes objectives end-to-end:

SLO Violation Mitigation (2)

* An RL-based resource estimation agent that learns to make provisioning decisions directly
from experience

* Minimize SLO violation

* Maximize resource utilization efficiency

------------------------------------------------------------------------------
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Multilevel ML Training

Reinforcement
Learning Training

FIRM’s
RL Agent
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Evaluation

* Implemented and deployed FIRM on a Kubernetes cluster of 15 physical nodes

* Running microservices benchmarks from DeathStarBench [1] and TrainTickets [2] driven by
open-loop workload generators

* Training and experiments driven by performance anomaly injection

» Comparison targets include Kubernetes autoscaling [3] and an additive increase multiplicative
decrease (AIMD)-based method [4]

[1] Yu Gan, Yanqgi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, et al. An
opensource benchmark suite for microservices and their hardware-software implications for cloud & edge systems. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages and Operating Systems, pages 3-18, 2019.

[2] Train Ticket - A train-ticket booking system based on microservice architecture. https://github.com/ FudanSELab/train-ticket.
[3] Autoscaling in Kubernetes. https:// kubernetes.io/blog/2016/07/autoscalingin-kubernetes/

[4] Sonja Stidli, M. Corless, Richard H. Middleton, and Robert Shorten. On the modified AIMD algorithm for distributed resource management with saturation of
each user’s share. In Proceedings of 2015 54th IEEE Conference on Decision and Control (CDC), pages 1631-1636. IEEE, 2015.



Results

* Reduces the SLO violation mitigation time by up to 9x o~
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Conclusion
FIRM uses SVM-based critical component extraction to localize at runtime root cause
microservice instances for SLO violations

FIRM uses RL to generate workload-specific mitigation policies, optimized to estimate
resources in contention and provide re-provision actions

FIRM leverages the two-level ML model structure to improve interpretability and save training
time

FIRM outperforms Kubernetes auto-scalers and AIMD-based methods



Thank you!

Check out the full paper for more details!
(haorang4@Illinois.edu)
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