
AV-FUZZER: Finding Safety Violations in
Autonomous Driving Systems

Guanpeng Li∗, Yiran Li∗, Saurabh Jha∗, Timothy Tsai†, Michael Sullivan†, Siva Kumar Sastry Hari†,
Zbigniew Kalbarczyk∗, Ravishankar Iyer∗

∗University of Illinois at Urbana-Champaign, †NVIDIA

Abstract—This paper proposes AV-FUZZER, a testing frame-
work, to find the safety violations of an autonomous vehicle (AV)
in the presence of an evolving traffic environment. We perturb
the driving maneuvers of traffic participants to create situations
in which an AV can run into safety violations. To optimally
search for the perturbations to be introduced, we leverage domain
knowledge of vehicle dynamics and genetic algorithm to minimize
the safety potential of an AV over its projected trajectory. The
values of the perturbation determined by this process provide
parameters that define participants’ trajectories. To improve the
efficiency of the search, we design a local fuzzer that increases the
exploitation of local optima in the areas where highly likely safety-
hazardous situations are observed. By repeating the optimization
with significantly different starting points in the search space,
AV-FUZZER determines several diverse AV safety violations. We
demonstrate AV-FUZZER on an industrial-grade AV platform,
Baidu Apollo, and find five distinct types of safety violations in
a short period of time. In comparison, other existing techniques
can find at most two. We analyze the safety violations found in
Apollo and discuss their overarching causes.

Index Terms—Autonomous vehicles, safety-critical applications

I. INTRODUCTION

From reducing traffic congestion to improving access to
transportation, autonomous vehicles (AVs) hold significant
potential to increase productivity and improve quality of life.
Ensuring AV safety is critical to success in the marketplace,
particularly since there is a public perception problem with
regard to their safety, and this public wariness impacts AV
vendors’ decisions to produce and deploy these vehicles.

Testing is an essential aspect of AV development that ensures
the vehicles driven by self-driving software are safe. Commonly,
AVs are tested using stress-testing techniques. A popular
practice is leveraging human-specified inputs, where a human
operator specifies the maneuvers of surrounding vehicles in
traffic and observes the target AV’s behavior [1]. However,
this approach is expensive and takes a very long time due
to extensive human labor involvement. Recently, researchers
have proposed automatic (or semiautomatic) techniques to
generate test cases for AVs [2]–[6]. These approaches either use
random sampling methods or rely on training machine-learning
models to navigate test case generation [4], [7]. However, these
techniques often overlook edge cases or tend to repeatedly find
failures similar to ones already discovered. Moreover, they can
be inefficient in testing real-world AVs with industrial-grade
simulators, as the state space of vehicle behaviors (including
the physical states of all the vehicles and the internal software
states of the AV) are huge. AV technology vendors, such as

Baidu Apollo, release software updates on a weekly basis [8],
[9]. It is challenging to scale existing AV testing techniques to
such a rapidly developing AV industry.

This paper proposes AV-FUZZER, an efficient AV testing
framework that generates test cases to determine the safety
violations of an AV in the presence of an evolving traffic
environment. We perturb the driving maneuvers of traffic
participants (e.g., other vehicles in the environment) to creating
situations in which an AV runs into safety violations. Our
approach is based on the following insights and observations:
(1) We can formulate the search of the perturbations to be
introduced as an optimization problem that can be solved
using genetic algorithm and the domain knowledge of vehicle
dynamics. We minimize the safety potential of an AV over
its projected trajectory, and the values of the perturbation
determined by this process provide participants’ parameters
that define their trajectories. (2) The efficiency of finding
safety violations can be improved by designing a local fuzzer
that dynamically increases the exploitation of local optima in
areas where highly likely safety-hazardous situations (i.e., near-
miss accidents, etc.) are observed. (3) We develop a restart
mechanism that repeats the optimization with significantly
different starting points in the unexplored search space, to
determine diverse safety-hazardous situations in which the AV
will run into safety violations.

We demonstrate AV-FUZZER on Baidu Apollo, an industrial-
grade, level-4 AV software stack widely used to control AVs
on public roads [10], [11]. We find several safety-critical
deficiencies in Apollo that have not been discovered or reported
before, and we are able to find these safety violations in a
relatively short period of search time. Specifically, we find 13
critical scenarios in which Apollo runs into hazardous situations
that lead to crashes. In contrast, other techniques, such as
random fuzzing and adaptive stress testing [4], find only 1 and
5 safety violations, respectively, in the same amount of search
time. We then analyze the overarching causes of the safety
violations AV-FUZZER reports in Apollo and characterize them
into 5 distinct types that map to various categories of software
deficiencies in that system. Of the 5 types, 2 mimic real-world
AV accidents reported to the California DMV [12] in the past.
While AV-FUZZER finds all 5 types within 20 hours of search,
existing techniques [4] can find at most 2 distinct types, even
given 10x the search time (200 hours).

Because AV-FUZZER is both efficient and effective, it can
be integrated into the AV development cycle. To the best of our

1

 Configurations

AV-Fuzzer

NPC Maneuvers

Environment
Setup

 Domain Knowledge

Vehicle Kinetics

Safety Model

R
andom

 R
estart M

anager

G
ra

ph
ic

al
 S

im
ul

at
or Unity Real-Time Engine

Collision Watchdog

Monitors & Logging

AI Agents

A
D

S
Sy

st
em

Sensors

Modules

Mechanical Components

Perception Prediction

Planning Routing

Localization Control

16

5

2

3

4
Fuzzing
Engine

Genetic
Algorithm

Local
Fuzzer

Figure 1: A high-level overview of AV-FUZZER framework,
including the graphical simulator, and the AV architecture.

knowledge, this is the first study that (i) proposes an efficient
testing framework that assesses how driving maneuvers of
traffic participants impact the safety of an end-to-end, real-
world, industrial-grade AV system and (ii) investigates the
software deficiencies of Apollo that lead to safety violations in
autonomous driving.

To summarize:
• We propose AV-FUZZER1, an AV testing framework

that quickly finds diverse safety violations caused by an
AV in the presence of a dynamically changing traffic
environment.

• We demonstrate the capabilities of AV-FUZZER on an
industry-grade, level-4 AV technology stack, Baidu Apollo,
and find more safety violations much more efficiently than
other existing AV test methods.

• We analyze and classify the safety violations AV-FUZZER
reports in Apollo into 5 distinct types, and discuss their
overarching causes.

II. BACKGROUND

In this section, we describe the architecture of an autonomous
driving system, the high-level concept of genetic algorithms,
and the high-fidelity simulations used in this study.

A. Autonomous Driving Systems

AVs use Autonomous Driving System (ADS) technology
to replace human drivers in controlling a vehicle’s steering,
acceleration, and monitoring of the surrounding environment
(e.g., other vehicles) [3], [8], [13]. A modern ADS architecture
consists of a sensor layer and six basic modules [9], as shown
in Î in Fig. 1.

Sensor Layer: The sensor layer preprocesses input data and
filters sensor noise. An ADS supports a wide range of sensors,
such as cameras, inertial measurement units (IMU), Global
Positioning Systems (GPS), sonar, RADAR, and LiDAR. In
this study, we use the prototype vehicle Baidu Apollo, which is
equipped with two camera sensors (one at the top and another
in front of the vehicle) and one LiDAR [9].

Perception Module: The perception module reads data
from the sensor layer to detect static objects (e.g., lanes,
traffic signs, or barriers) and dynamic objects (e.g., passenger
vehicles or trucks) in the traffic environment using computer

1AV-FUZZER can be downloaded at https://github.com/cclinus/AV-Fuzzer

vision and deep-learning techniques. The object detection
algorithm performs tasks, such as segmentation, classification,
and clustering, based on the sensor data from individual sensors.
Then it uses fusion techniques such as extended Kalman
filters [14], to merge the data and generate a final track list of
objects.

Localization Module: The localization module is respon-
sible for providing the location of the AV. It fuses multiple
sets of input data from various sources to locate the AV in the
world model. It does so via aggregation of input data from
GPS, IMU, and LiDAR sensors.

Prediction Module: The prediction module is responsible
for studying and predicting the behavior of all the objects
detected by the perception module in the world model. It
generates basic information on objects, such as their positions,
headings, velocities, and accelerations, and then uses this data
to generate predicted trajectories with probabilities for those
objects.

Routing Module: The routing module generates high-level
navigation information based on the current location and
destination of the AV. The output of the module, passage
lanes, and roads are computed based on the HD map.

Planning Module: The planning module generates naviga-
tion plans based on the origin and destination of the AV and
computes a safe (i.e., collision-free) driving trajectory for the
AV using the output data from the localization and prediction
modules.

Control Module: The control module takes the planned
trajectory as input and generates control commands (e.g.,
actuation, brake, steer) to pass to the CAN bus, which delivers
the information to the AV’s mechanical system.

B. Genetic Algorithm

Genetic algorithm (GA) [15], [16] is a meta-heuristic search
algorithm inspired by natural evolution. The algorithm starts
with an initial set of candidate solutions, which are collectively
called the population. The algorithm is driven by a fitness
function that computes the fitness score of a candidate. The
fitness score reflects how good the candidate is at solving the
problem.

At each stage, some candidate solutions are chosen from the
population for recombination operations. There are two types
of recombination operations: (a) crossover and (b) mutation. In
crossover, two candidates are randomly chosen and exchanged
in the hope of generating a better solution from a good one.
This operation tends to narrow the search and move toward
an optimal solution. In mutation, one candidate is randomly
selected. The operation flips a bit or an entity in a solution,
which expands the search exploration of the algorithm. In
general, recombination operations give rise to new, better-
performing members, which are then added to the population.
In contrast, members that have poor fitness scores are gradually
eliminated. Each such processes is called a generation and is
repeated until either a population member has the desired fitness
score (hence a solution is found) or the algorithm terminates
upon exceeding the time allocated to it.

2

C. High-Fidelity Simulation Platform

We use an Unreal Engine (UE) based real-time simulation
platform, LGSVL [17], that is capable of simulating complex
urban and freeway driving scenarios using a library of urban
layouts, buildings, pedestrians, and vehicles. The simulator can
generate various sensor data at regular intervals (from cameras,
LiDARs, etc.) that can be fed to the ADS platform, providing
an end-to-end simulation environment for testing ADSs. The
simulator supports a representative model of physics that
mimics real-world vehicle dynamics, enabling a high-fidelity
simulation of vehicle behaviors and their moving trajectories.
The high-fidelity simulation also indicates a large search space
of vehicle states (i.e., positions, velocities, AV internal software
states, etc.). The simulation platform is a typical environment
used by the AV industry to develop and test their ADSs.

III. AV-FUZZER OVERVIEW

This section presents an overview of AV-FUZZER. Our
overarching goal is to efficiently identify traffic maneuvers
of surrounding vehicles that lead to AV safety violations. We
use GA to minimize a defined fitness function (equivalent to the
safety of the AV) to guide the search for problematic maneuvers.
In this context, each time we find a highly likely safety-
violation case, we trigger further exploitation of the surrounding
areas (i.e., perturbing parameters of the surrounding traffic) to
pinpoint hazardous conditions that lead to safety violations. We
do so by using GA to first explore towards high-potential areas
in the search space where the safety of the AV is low. Then we
leverage a local fuzzer to extensively exploit each of these high-
potential cases and evolve them into safety-violation scenarios,
if possible. When we observe the process getting stuck, we
restart the search from a significantly different starting point in
an unexplored area in the search space, based on the historical
trajectories we have already explored. By moving across the
optimization space in this way, we are able to determine a
number of diverse safety-violation scenarios of the AV.

Fig. 1 shows the overall structure of the AV-FUZZER
framework, as well as diagrams of the simulator and the AV
under test. AV-FUZZER (Ê) consists of a configuration module
(Ë) that specifies the driving environment, a domain knowledge
module (Ì) that defines safety model and vehicle kinetics, and
a fuzzing engine (Í) that drives test scenario generation. AV-
FUZZER is connected to a graphical simulator (Ï) that feeds
sensor inputs to the AV under test (Î) and provides a simulation
platform. In this paper, we call non-AV traffic participants non-
player characters (NPCs) or target vehicles (TVs). We refer
to the AV under test as the ego vehicle (EV) or the AV. We
define a scenario as a sequence of NPC maneuvers performed
in a given a driving environment in a simulation.

A. Configuration: Driving Environment Setup (Ë in Fig. 1)

The configuration module specifies the driving environment
in which the test is conducted. In the setup, the user of AV-
FUZZER specifies a driving environment: the road structure
where the test happens, NPCs and their initial states, and
the allowed maneuvers of NPCs in the test. The driving

environment can be chosen from existing road structures
supported by the simulator used. For example, in our study,
we use the LGSVL graphical simulator [17] that supports
both freeway and urban road structures. Users can also create
other road structures for their tests. AV-FUZZER is not tied
to particular configurations. In this study, the allowed NPC
maneuvers consist of acceleration/deceleration, following lane,
and making lane change. When accelerating/decelerating, a
target speed (ranging from 0 - 41m/s) is set for the NPC.
The vehicle will try to reach the target speed based on the
kinematics of the vehicle. These maneuvers are implemented
and supported by LGSVL simulator APIs [17].

B. Domain Knowledge Module (Ì in Fig. 1)

EVTe
sl

a
Ex

am
pl

e

EV TV2

TV1

EV

G
oo

gl
e

AV
 E

xa
m

pl
e TV

EV

TV

Figure 2: Real-world examples of violating safety constraints
which lead to crashes (EV = ego vehicle or the AV under test;
TV = target vehicle or NPC)

AV-FUZZER leverages domain knowledge to perform an
informed exploration to search for possible scenarios that are
likely to lead to AV safety violations. It does so by combining
vehicle kinetics and a safety model with a defined fitness
function to guide the scenario-generating process.

1) Safety Model: AV-FUZZER allows users to define a set of
safety constraints in their tests based on the design requirements
of the AV, the operational design domain (ODD), and traffic
laws (which depend on geographical location). Violating the
condition(s) of the safety constraints indicates a safety violation.
One of the requirements for AVs is that they follow traffic
regulations and do not cause at-fault accidents. Therefore, we
define two common safety constraints that an AV must follow
in order not to cause any at-fault accidents on public roads.
We use one real-world example for each to illustrate the safety
constraints we define in our safety model. These are shown in
Fig. 2.

SC-1: The first example corresponds to a problem with Tesla
Autopilot: the Tesla fails to register the vehicle in front of it
and accelerates; the Tesla rear-ends the vehicle, leading to
a fatal accident [18]. Based on traffic regulations, Tesla has
significant liability in the rear-end collision, since it failed to
maintain a safe distance from the leading vehicle. We define
maintaining a safe distance from the leading vehicle as one of
the safety constraints, SC-1. Hence, failure to do so and thus
to cause an accident results in safety violations.

SC-2: The second example (shown at the bottom of Fig. 2)
illustrates an accident in which a Google AV failed to yield
to a vehicle (TV) approaching from behind in the adjacent
lane, resulting in a side collision [19]. In this case, the TV had
the right of way, and the Google AV should have yielded to

3

Lo
ng

itu
di
na
l

La
te
ra
l

δ

dsafe
δ

dstop

EV
TV

EV

dstop

dsafe

Figure 3: Vehicle kinetic safety model. Definition of dstop,
dsafe, and δ for lateral and longitudinal movement of the car.

it. Hence, the Google AV has significant liability. We define
yielding to a vehicle that has the right of way as the other
safety constraint, SC-2. Failure to do so and thus causing an
accident will result in safety violations.

Recall that our goal is to determine the NPC trajectories in
a scenario in which the AV will run into the safety violations.
There can be many possible such NPC trajectories that can
lead an AV to violate the safety constraints (either SC-1 or
SC-2)—these trajectories are what AV-FUZZER aims to find.

2) Vehicle Kinetics: We define a vehicle kinetic model that
connects vehicle dynamics with the safety model. This kinetic
model is applied to the conditions of violating the safety
constraints in a collision to quantify safety potential. In the
vehicle kinetic model, we define the instantaneous safety criteria
of a vehicle in terms of the longitudinal (i.e., in the direction
of the vehicle’s motion) and lateral (i.e., perpendicular to the
direction of the vehicle’s motion) Cartesian distance travelled
by the AV (see Fig. 3). We define δ, the safety potential, in (1).

δ = dsafe − dstop (1)
In the equation, dsafe [20], [21] of a vehicle is defined as the

maximum distance the vehicle can travel without colliding with
any static or dynamic object. dstop is defined as the distance
the vehicle will travel before coming to a complete stop while
the maximum comfortable deceleration amax is being applied.
Similar models have been proposed in [13].

A vehicle is defined to be in a safe state if δ > 0 in
both the lateral and longitudinal directions with respect to
another vehicle.2 The safety potential, δ, is measured and
monitored globally in a scenario for every vehicle in the driving
environment with respect to the conditions of safety violations.
In general, the smaller δ is, the larger the risk of leading to
a safety violation at that moment, as the vehicle needs more
space than is available to avoid the collision.

C. Fuzzing Engine (Í in Fig. 1)

Fig. 4 illustrates the workflow of the fuzzing engine. At a
high level, our fuzzing engine starts with GA (À in the figure),
which is guided based on feedback from a fitness function. We
define the fitness function in terms of the safety potential δ,
which is measured using the actual AV self-driving performance
and NPC trajectories in a scenario. The GA starts with a set
of scenarios with randomly generated NPC maneuvers in the
population. It then introduces changes to the NPC maneuvers
via recombination operations. The GA keeps the scenarios that
have lower safety potential and eliminates the ones with high
safety potential, based on the fitness scores of the scenarios.

2We use the shorthand δ > 0 to mean both lateral and longitudinal δs.

This process is repeated until a scenario with lower safety
potential is found. In that way, the GA performs a directed
exploration in the NPC maneuver space to narrow the search
and move towards safety violation scenarios. Once the GA finds
a scenario with a low safety potential, we use the scenario as
a seed scenario for exploitation (Á in Figure 4). Note that this
exploration process can also be guided by other optimization
algorithms; however, we choose GA since it provides better
efficiency in optimizing trajectories in high-fidelity simulations.
We will further explain this in Section IV-B and V-A.

We designed a local fuzzer (Ã in Figure 4) that takes the seed
scenario and iteratively exploits its close variants to identify
safety violations. The local fuzzer is triggered as a subroutine
of the GA when a scenario with low safety potential is observed.
Our intuition is that there might exist a safety violation around
a near-miss case, hence we exploit the local optima of it before
the search is directed to a different target area. In this step,
the GA main process is suspended, and the local fuzzer takes
over and searches the NPC maneuvers around the seed for
safety violations given a period of search time. The GA main
process is resumed at the end of the local fuzzer’s execution.
Any safety violation scenarios found during the process are
reported.

We monitor whether the fitness of the generated scenarios
is improved over time in the GA. If it is not, we conclude
that the GA is stuck at a local optimum. We launch a Random
Restart process if that happens (shown in Ä in Fig. 4), such
that a new set of scenarios are initialized and the GA can
restart. We do this by randomly generating a large set of NPC
maneuvers for the new set of scenarios and choosing the ones
that are most different from those in past scenarios that the
GA generated. The restart mechanism ensures that (1) the GA
gets out of the stuck point when the search direction is likely
a dead end, and (2) distinct safety violation scenarios can be
found as a result of the restart in an uncharted area in the
search space. These components synergistically work together
and dynamically balance exploration versus exploitation in the
search.

D. Putting AV-FUZZER into Perspective

The fuzzing engine features informed searching according
to the feedback from introducing a new NPC maneuver in a
scenario. The feedback based on the fitness function is provided
by monitoring the states of vehicles in the environment, and it
applies domain knowledge when computing the safety potential.
For illustration, we use one of the safety violation scenarios
found by AV-FUZZER as the running example in Fig. 5.

Fig. 5 (a) shows a TV that tries to overtake the AV, leaving a
little space in front of the AV. If the speed of the TV increases,
a rear-end collision is less likely (shown in Fig. 5(b)). We will
observe an increasing δ value. However, if the speed of the
TV decreases, δ will decrease, leaving the AV with less time
and space in which to respond and avoid the collision (shown
in Fig. 5(c)). Ideally, if an AV is defect-free, it should be
able to handle these changing behaviors of the TV and avoid
causing accidents given the safety constraints (Section III-B1).

4

High
Safety

Violation
Potential

Found
?

Local
Fuzzer

Genetic
Algorithm

Safety
Violation
Potential
Improved
Over Time

?

Random
Scenarios

Random
Restart

Distinct
Scenarios
Compared

with History

Safety
Violation

Scenarios

Timeout ?
Start

Termination

Initialize
Population

Re- Initialize
Population

Y

N

N

Y Y

N

1 2 3

4

5

6

Figure 4: Workflow of AI-driven fuzzing engine.
However, if the AV is defective, the latter case (with lower δ)
will lead to a scenario where the AV is more likely to reveal a
safety violation. The GA randomly mutates an NPC maneuver
in every scenario. By monitoring δ in the scenarios, the GA is
able to select scenarios that have lower safety potential (i.e.,
lower δ) as a result of the mutations and discard the ones with
higher safety potential. In our example, scenarios similar to
that in Fig. 5(b) are likely to be eliminated, whereas scenarios
that are similar to that in Fig. 5 (a) are carried forward in the
GA evolution. In this way, the surviving scenarios will contain
the NPC maneuvers that are more likely to lead to AV safety
violations.

Mutating to high NPC speed
mitigates the risk

Mutating to low NPC speed
leads to hazardous situation

(a)

(b)

(c)

δ increases

δ decreases

EV
TV

Figure 5: The GA searches for safety violation scenarios
in NPC maneuver space based on the actual self-driving
performance of the AV.

IV. ALGORITHM DESIGN

This section presents the formalism for the fuzzing engine.

A. Modeling Vehicle Behaviors

Let mt be a driving maneuver employed by an agent (either
NPC or AV) at time t. We use mNPC,i

t to denote the maneuver
of ith NPC and mAV

t for the AV. A sequence of maneuvers
performed by the ith NPC until time t is denoted by φNPC,it ,
and by the AV as φAVt . We use φNPCt = {φNPC,it : ∀i} to
represent the set of all NPC maneuvers until time t.

We define the state of an ith agent at time t as Sit. It consists
of the agent’s position (~x), velocity (~v), and acceleration (~a).
We use SNPC,it to denote the state of the ith NPC and SAVt to
denote the state of the AV. The states of all agents at time-step
t are denoted by St. In our study, the states are observed from
the simulator.

We use sim output to denote Ot at time-step t. It is 3D
frames generated by the simulator’s rendering engine (e.g.,
Unreal Engine). The AV reads sim output using sensors (e.g.,
camera images, LiDAR point-cloud, RADAR data, and GPS
location) as input It.

Recall that a driving environment is characterized by the
initial state of the NPCs and the AV, and the road type (i.e.,
urban vs. freeway). Examples of driving environments are

shown in Fig. 7. A scenario, denoted by D, is characterized
by the set of all maneuver sequences of NPCs (i.e., D =
{φNPC,it : ∀i}).

The maneuvers of the AV are dependent on the state of
the AV at time t and on the previous maneuver at time t− 1
(shown in (2)). They are chosen by the planning module in the
ADS of the AV and denoted by Pev . The control module in the
ADS takes these maneuvers and provides actuation commands
(e.g., steer, throttle, brake), denoted by AAV

t . The actuation
commands drive the AV in the simulator.

mAV
t = PAV (St

NPC,i,mAV
t−1) (2)

The AV uses (IAVt−k:t), which senses data from multiple
cameras, LiDAR, RADAR, GPS, and IMU, to determine its
own state as well as the states of all the NPCs. This is shown in
(3). Here, Lav corresponds to the AV’s sensor layer, perception
module, and prediction module. St is what our fuzzing engine
observes and uses to compute safety potential in the fitness
function.

St = Lav(IAVt−k:t) (3)
The maneuver of the ith NPC at time t is dependent on

its own state as well as the previous maneuver at time t −
1, as that is shown in (4). Here Psim is the planner of the
simulator that issues maneuvers for NPCs. The controller takes
those maneuvers and provides actuation commands, denoted
by ANPC,i

t , to each NPC. The actuation commands drive the
NPCs in the simulator. The NPC maneuvers are what our
fuzzing engine perturbs via simulator API.

mNPC,i
t = Psim(St

NPC,i,mNPC,i
t−1) (4)

The state of each agent is readily available to the simulator
through its direct access. The states of all the agents and
actuation values in the simulator generate 3D frame Ot,
forming the observations of the AV that transform to IAVt−k:t.

Ot+1 = Rsim(St,At) (5)
B. Genetic Algorithm

Why GA? There are various optimization algorithms that can
be chosen to guide the search. We choose GA for the following
reasons: (1) We empirically observed that GA can be more
efficient than model-based techniques, such as reinforcement
learning (RL), in optimizing NPC trajectories in a high-fidelity
simulation. This is because the state space of trajectories
and vehicle behaviors is huge in a high-fidelity simulation.
Observing a repeated one, necessary for RL to be effective,
requires RL to accumulate a huge set of historical data, which
can be very time-consuming. In contrast, GA guides the search
by trial and error without relying on having a huge set of
historical data. (2) There are inherently many local optima in

5

Scenario A

Scenario C Scenario D

Scenario B

Generation 1

Scenario D

NPC 50 mph Left Lane Right Lane … ...

NPC
… ...

Right Lane 60 mph 40 mph … ...

Scenario B

NPC 30 mph 20 mph Left Lane … ...

NPC
… ...

50 mph Right Lane 30 mph … ...

Crossover:
Swap NPCs between
chosen scenarios

Mutation:
Change the maneuver of an
NPC at chosen time

Recombination Operations Fitness score evaluation of each
scenario in simulator

Scenario D
Fitness Score: 120

Scenario A
Fitness Score: 95

… ...

… ...

Roulette Selection

Scenario selection to the next
generation

Population Initialization

AV system under test
… ...

Time 0 Time 1 Time 2

Time 0 Time 1 Time 2

… ...

… ...

Figure 6: A high-level overview of the genetic algorithm design.

the space, each of which may correspond to a unique case of
safety violation. We aim at finding as many safety cases as
possible, and GA is found to be efficient in promoting solution
diversity [22]. (3) Other methods, such as Bayesian linear
regression [23], Bayesian optimization [6], and variational
inference [24], are promising but can be either data-inefficient
or difficult to scale to a high-dimensional state space. We
evaluate the performance of AV-FUZZER and compare it with
other techniques in Section V.

The high-level workflow of the genetic algorithm is shown
in Fig. 6 and will be described next.

1) Initialization: We begin with a set of randomly initialized
scenarios as our initial population. Recall that a scenario
is characterized by a sequence of all NPC maneuvers (i.e.,
{φNPC,it : ∀i}). In the GA, a scenario corresponds to a
chromosome, and a maneuver mNPC,i

t for the ith NPC
corresponds to a gene. We ensure that at time-step t = 0,
all agents are safe, i.e., δt=0 > 0.

2) Fitness Function: In the GA, the fitness score of a
candidate is used to determine whether the candidate should
be carried forward or eliminated. There are a few proposals for
designing fitness functions in the area of testing autonomous
systems [25]. For our testing purposes, We choose to design our
fitness function based on domain knowledge and vehicle safety.
Our fitness function gives a fitness score to each scenario based
on the AV’s and NPCs’ performance. Since we are looking for
AV safety violations that lead to crashes, we define our fitness
function with the objective of decreasing safety potential (δ).
δ can be decreased by either decreasing dsafe or increasing
dstop (or both) as defined in (1). AV-FUZZER achieves this
by choosing NPC maneuvers (φNPCt) that can lead to such
conditions, shown in Section III-D. As shown in (6), our fitness
function optimizes decreasing of δ.

F(PAV , φNPCt) = min{δt : ∀t} (6)
In our simulation experiment, we measured the fitness score

of a scenario four times per second3. A smaller δt measured at
a time-step t indicates a higher risk of safety violation at time
t. The risk can be mitigated or increased in the next time-step
(t+ 1), depending on the dynamics of the environment.

We are interested in solving the following optimization
problem in the GA:

φNPC
∗
= argmin

φNPC

F(PAV , φNPC) (7)

where φNPC
∗

are the NPC maneuvers that may cause the AV
to have safety violations. The fitness score is used to rank each

3This is to balance experiment time and measurement granularity, as each
measurement of the fitness score requires the simulation to pause, which slows
down the entire simulation process.

candidate scenario, and the GA decides whether the candidate
scenario should be considered for the next evaluation round.

3) Recombination Operations: The recombination opera-
tions consist of mutation and crossover. The high-level ideas
of the two operations are shown in Figure 6.

Mutation: Given a set of mNPC,i
t in a scenario, the

mutation operator randomly chooses one of them and randomly
changes it with a maneuver from the allowed NPC maneuvers
(Section III-A) with a probability of rm.

Crossover: We designed the crossover operation as a swap
operation, which increases the chances of combining the NPCs
in two scenarios to form a new scenario with a higher chance
of AV safety violations. In every generation, the swap operation
randomly selects two NPCs in two scenarios, one from each,
and swaps the two NPCs with a probability of rc.

We experimented with rm and rc values in the range that the
GA literature recommends [16] and chose 0.3 and 0.4 for rm
and rc, respectively; they result in the shortest time to arrive
at safety violation scenarios in our case.

4) Roulette Selection: The goal of the selection process is to
eliminate unfit candidates from the population. We do this by
integrating a roulette selection process that selects candidates
in proportion to their fitness scores. If a scenario has a higher
fitness score, it will be selected more often. To do this, we
"size" the candidates according to their fitness scores. Let T
be the sum fitness score of all the scenarios in a generation. A
random number from 0 to T falls within the range of some
scenario, which is then selected. With fitness-proportionate
selection. There is a chance that some scenarios with lower
scores may survive the selection process. The reason for this is
that the probability that the weaker scenarios will survive is low,
but not zero, meaning it is still possible they will be selected.
That is an advantage because there is a chance that even weak
scenarios may have some features or characteristics that could
prove useful following the recombination operations [26].

C. Local Fuzzer

The intention of local fuzzer is to dynamically increase
the exploitation of the surrounding areas when any scenario
with anhigh potential for safety violations is discovered. Such
high-potential cases may represent near-miss cases of safety
violations. We use them as seed scenarios. The local fuzzer
process focuses on exploitation that mines local optimum in
the neighborhood based on those seed scenarios collected by
the GA. Once a scenario (say chigh) with a high fitness score
is found by the GA after a few initial stages of evolution, the
scenario will be used as a seed scenario. A subroutine of a
local fuzzer will be called while the evolution process of the

6

GA is paused. In the local fuzzer, a new population of chigh
is initialized with the seed scenario, and a mutation-based
fuzzing process is performed based on the new population. To
maintain a high level of safety violation potential during the
local fuzzing, we stick with the fitness function as in the GA,
but with a doubled mutation rate, based on the seed scenario
as the entire population of the local fuzzer. At the end of local
fuzzing, chigh in the GA will be replaced by a scenario with a
higher fitness score found during the local fuzzing (if there is
one). This ensures an opportunity for a good gene of a better
scenario to be introduced into the GA population. After the
local fuzzing, the subroutine ends, and the main process of the
GA is resumed.

D. Random Restart

In addition to the local fuzzer, we employ a random restart
(RR) mechanism in AV-FUZZER to promote solution diversity.
The RR will be activated on demand, dynamically navigating
the exploration to an uncharted area in the search space when
the GA gets stuck. If we observe that the fitness score does
not improve over time, we force an RR. We monitor the fitness
improvement by comparing the current fitness score with the
average score over the last five generations. We keep the full
history of NPC maneuvers explored in every past scenario and
use them to generate new initial populations for RR. When
forcing an RR, we create 1,000 candidate scenarios initialized
with random NPC maneuvers and then select the most-different
ones for the new population of RR. The similarity comparison
is done by computing the Euclidean distance between the
NPC trajectories projected by the initialized maneuvers in the
candidate scenarios and those in every past scenario, hence we
do not require running simulations. The Euclidean distance is
calculated based on the locations sampled every second along
each of the trajectories.

E. Termination

We repeat the above steps of the GA, local fuzzer, and RR
until a given time budget is exhausted. AV-FUZZER then returns
all the scenarios that resulted in AV safety violations during
the evolution. It is possible that no such solution scenarios
have been found. In that case, AV-FUZZER reports empty. Note
that there could be many reasons why AV-FUZZER might be
unable to find any safety violation scenarios. For example, the
ADS under test may be robust against violating the defined
safety constraints, or the search time allowed for AV-FUZZER
might have been too short.

V. RESULTS

In this section, we demonstrate the efficiency and effective-
ness of AV-FUZZER in terms of the time needed to find safety
violations and their diversities. We then analyze the safety
violations found in Apollo and discuss their underlying causes.
Our experiments were conducted on a Ubuntu PC with 256GB
memory, an Intel Xeon CPU, and an NVIDIA GTX1080 TI.
Apollo 3.5 and LGSVL 2019.05 were used in our experiments.

(a) DS-1: Freeway (b) DS-2: Urban
Figure 7: Driving environments supported by simulator.

A. Efficiency

We evaluate the efficiency of comparing it against two
baselines with respect to (1) the total number of safety
violations found and (2) the mean time to the occurrence
of a safety violation, given a fixed search time. For our first
baseline, we build a random fuzzer that generates random
NPC maneuvers in every scenario. For the second baseline, we
choose a state-of-the-art adaptive stress testing (AST) technique
powered by reinforcement learning (RL) [4]. RL is a popular
machine-learning algorithm based on Markov decision process.
We establish the baseline by adopting the code of an RL
AST technique in [4]. Similar AST techniques are also used
in [5], [7]. We connect the two baselines to our simulation
infrastructure by replacing the fuzzing engine in the framework
(Figure 1) with either a random fuzzer or an RL AST.

Fig. 7 illustrates two driving environments (freeway and
urban) that are supported by the simulation engine and are
used in our evaluation. In each environment, the AV and NPCs
are placed on the road, separated by some distance. The blue
vehicles with bounding boxes are the NPCs whose maneuvers
are subjected to change. The driving environments are common
driving cases encountered by drivers on a daily basis. The
vehicles are initialized with zero speed and in a safe state. The
destination of the AV is set to the far end of the other side of
the road. A simulation in each driving environment takes an
average of 3.6 minutes to evaluate in our setup.

(a) No. of safety violations (b) Meantime to safety violations
Figure 8: Efficiency of AV-FUZZER.

Fig. 8a shows the numbers of safety violations AV-FUZZER,
RL AST, and the random fuzzer found in DS-1 and DS-2, given
a 10-hour simulation time budget for each technique in each of
DS-1 and DS-2. As can be seen, no safety violations are found
in DS-1 by the random fuzzer, and 3 are found by RL AST.
In contrast, AV-FUZZER finds 5 safety violations. In DS-2,
AV-FUZZER finds 8 safety violations, whereas RL AST and
random fuzzing find only 2 and 1, respectively.

Fig. 8b illustrates mean time to safety violation found by
AV-FUZZER, RL AST, and the random fuzzer in DS-1 and
DS-2. During the search, AV-FUZZER generates a total of 5
and 8 seeds in DS-1 and DS-2, respectively. The local fuzzer
runs for 5 generations based on each seed. The mean time to
safety violations is calculated by dividing total simulation time
by the number of the safety violations found by a technique.
These are 120 mins and 75 mins for AV-FUZZER in DS-1 and

7

DS-2, respectively. They are about 300 mins and 200 mins
for RL AST, and at least 600 minutes for the random fuzzer.
Moreover, it took 177 mins for AV-FUZZER to find the first
safety violation in DS-1, and 162 mins in DS-2. In RL AST,
it takes 296 mins and 224 mins to find the first one in DS-1
and DS-2, respectively. The random fuzzer finds only 1 safety
violation in DS-2 across the entire evaluation.

Overall, our evaluation shows that AV-FUZZER is able to
find more safety violations given the same period of search
time, hence it is more efficient than either RL AST or random
fuzzing. The reasons that AV-FUZZER outperforms both RL
AST and random fuzzing are as follows: (1) Our local fuzzer
(Section IV-C) in AV-FUZZER reduces the time needed to find
different local optima by dynamically increasing exploitation
when likely safety violation cases are nearby. As we further
measured, the mean time to safety violations is reduced by
about 1.8x on average if we remove the local fuzzer in AV-
FUZZER. (2) The restart mechanism (Section IV-D) helps
AV-FUZZER continue when it gets stuck, which saves time
during the search. (3) GA, which is a meta-heuristic search
algorithm, provides a quicker solution than model-based RL in
optimizing NPC trajectories. This is because an NPC trajectory
consists of a dense set of continuous values in a large space.
Observing a repeated trajectory, which is necessary for RL to
be effective, requires accumulating a huge set of historical data
for the training, which can be very time-consuming. One way
to mitigate this is to simplify an NPC trajectory by specifying
fewer discrete way-points to approximate where a vehicle
should move. Similar approaches are used in [6], [7] for
simpler environments. However, in our real-time, high-fidelity
simulation, such simplification of vehicle dynamics significantly
distorts the experiments, making the driving scenarios and
physics unrealistic. Hence, the cases found in such setups are
no longer representative of the real world and provide little
insight into the testing of an industry-grade AV such as Apollo.

B. Safety Violation Scenarios

We review all the safety violation scenarios observed in
our experiments and classify similar ones into groups based
on their underlying causes. As a result, we categorize all the
safety violation scenarios into 5 distinct types based on vehicle
trajectories and possible design deficiencies in Apollo. After
obtaining the result described above, we continue running the
test for another 90 hours for each of DS-1 and DS-2. AV-
FUZZER ends up with another 46 safety violation scenarios as
the result of the search, thereby reaching a total of 59 during
the 200-hour search). We observe that all the safety violation
scenarios, including the additional ones, are variants of the 5
types. Moreover, these 5 types are all revealed in the 13 safety
violations found in the first 20-hour search by AV-FUZZER,
indicating a saturation of the search. Note that RL AST and
the random fuzzer respectively only discover 2 types (Type
1 and 3) and 1 type (Type 1) among the 5 during the entire
200-hour search. This shows that AV-FUZZER can discover
more diverse safety violation scenarios in a shorter period of
time (20 hours in our simulation experiments), many of which

cannot be found by existing techniques even given 10x the
search time (200 hours). We show one example of each type
in Fig. 10.

Fig. 9 shows the Euclidean distances (Section IV-D) between
NPC trajectories across the 5 examples. The larger the distance,
the more different the trajectories. As shown, the types have
quite different NPC trajectories, with a minimum of 25.03
meters between example 2 and example 4, and a maximum of
85.76 meters between example 2 and example 5. The average
distance between scenarios is 63.65 meters. The size of the
vehicle in our simulation is about 4.3 meters in length.

Figure 9: Euclidean distances (in meters) between NPC
trajectories in safety violation scenarios.

Example 1 in Fig. 10 is a scenario in which the AV rear-
ends an NPC that is trying to overtake the AV. From the AV’s
perspective, the NPC is detected, moving at high speed, as
early as the time the NPC came to be behind the AV. However,
the AV is not able to predict the NPC’s intention to cut in front
of it, and hence does not take preemptive measures to slow
down and yield to the NPC. The NPC then starts merging into
the AV’s lane, but the AV is moving too fast to maintain at a
safe distance from the NPC, leading to the rear-end collision.
Usually, this type of accident can be avoided by humans drivers,
as humans can identify intentions based on early aspects of the
overtaking. Those early hints enable human drivers to apply
brakes earlier and likely avoid the mishap. One way to mitigate
this problem in AVs is to identify such NPC maneuvers based
on their trajectories and reduce speed accordingly to cooperate
in the merge-in maneuver of the NPC, just as human drivers
would commonly do. Unfortunately, Apollo is not equipped
with such safety measures.

We observe that a similar accident was recently reported by
Pony.AI in Fremont, California, to the California DMV [12].
As stated in the report, a Tesla Model 3 tried to overtake the
AV that Pony.Ai is test driving and to merge into the AV’s lane.
Unfortunately, the AV failed to identify the intention of the
Tesla and caused a rear-end collision. This indicates that the
kinds of deficiencies AV-FUZZER found do exist in real-world
AV systems and traffic environments.

Example 2 in Fig. 10 shows that the AV tries to overtake
the slow NPCs (TV1 and TV2) in front of it. The routine
is planned as a curvy trajectory that includes both TV1 and
TV2. As TV1 accelerates, the AV still tries to include TV1
in its trajectory, so the curvy trajectory becomes very long.
Consequently, the AV cruises between two lanes along with
the trajectory regardless of the state of TV2. Finally, the AV
fails to yield to TV2, which has the right of way, and collides
with it. The time-evolving simulation views of this scenario are
shown in Fig. 11. As seen, TV1 and TV2 were detected by the

8

EVTV

TV accelerates and tries to pass EV at
a very close distance.

Ex
am

pl
e

1
EV

TV

When close, TV tries to cut in. EV fails to identify
the intentions in the earlier stage of the maneuver.

EV TV

TV decelerates. EV tries to brake but does not
have enough space to avoid the collision.

EV

TV2

EV tries to pass the 2 slow vehicles ahead of it,
planning a long, curvy trajectory.

Ex
am

pl
e

2

TV1

EV

TV2

TV1 accelerates, but EV does not
update its original trajectory.

TV1

EV

TV2

TV2 accelerates while EV cruises between
lanes along with the long curvy trajectory.

EV

TV

EV travels at high speed while TV
moves slowly in the adjacent lane.

Ex
am

pl
e

3

EV

TV

TV slowly drifts into to the lane of EV, but EV fails to predict
the moving trajectory of TV because of TV’S low speed.

EV
TV

EV detects TV ahead but too
late to come to a stop.

EV

TV2

TV2 tailgates TV1; EV travels at high
speed with a safe distance from TV2.

Ex
am

pl
e

4

TV1

EV TV2

TV1 applies brakes; TV2 rear-ends TV1.
The speed of TV2 is suddenly reduced.

TV1 EV TV2

EV does not have enough space to come
to a complete stop to avoid the collision.

TV1

EV
TV2

TV1 moves slowly; TV2 tries to merge
into the lane of TV1.

Ex
am

pl
e

5

TV1

EV

TV2

TV1 and TV2 are side by side; EV interprets the two
as one vehicle located at TV2 in the adjacent lane.

TV1 EV

TV2

EV detects TV1 but too late to come
to a complete stop.

TV1

Figure 10: Examples of safety violation scenarios.

(a) Time 1 (b) Time 2 (c) Time 3

(d) Time 1 (e) Time 2 (f) Time 3
Figure 11: Example 2: Time-evolving simulation view (Top
is simulation view, bottom is Apollo view).

AV (seen from Apollo’s view), but the planning module of the
AV did not plan a new action to accommodate the moving TV1
and TV2 during the overtaking; hence, the AV kept cruising
between lanes. This scenario reveals the design deficiency of
Apollo in this situation.

Example 3 in Fig. 10 shows a generic case of an accident
that Apollo usually fails to avoid. While the AV is cruising
at high speed, if an NPC cuts in at very low speed from the
adjacent lane, it may lead to a rear-end collision. The reason can
be a combination of several possible problems in Apollo. (1)
We observe that in such scenarios, Apollo usually mispredicts
the future trajectory of the NPC, failing to identify the intention
to overtake. The NPC trajectory prediction is done by machine-
learning-based models in the Prediction Module (Section II-A).
Fig. 12 shows the moment before the accident happens. As
seen, the AV is not able to predict the future trajectory (which
should be shown as a long tail) of the NPC, and hence fails to
take preemptive action to decelerate to avoid the collision. We
notice that in this case, the NPC is predicted by Apollo to have
a speed of 0 m/s by Apollo at that moment, whereas the actual

NPC speed was 4.56 m/s, as measured from the simulator.
(2) We also observe that Apollo’s planner can be wrong even
when the NPC trajectory is predicted correctly. Fig. 12 (b)
shows this case. As seen, Apollo’s planner issues an overtaking
action (shown in a blue fence) that crosses the NPC’s estimated
trajectory. Therefore, the AV starts accelerating, leading to an
accident.

Figure 12: Example 3: (a)Failure to predict NPC trajectory;
(b)The planner issues an overtaking action when it should not

Example 4 illustrates a cascade accident. As shown
in Fig. 10, Apollo is following TV2. TV2 starts accelerating,
and so does Apollo. At some point, TV2 rear-ends TV1,
which is stationary. As a result, the speed of TV2 is suddenly
reduced to zero, leaving Apollo little time to react. Apollo
starts applying the brake when it is only 7.3 m from TV2, and
the speed of Apollo is 41 km/h. Based on our profiling, Apollo
would need at least 8.75 m to come to a complete stop, so a
rear-end collision occurs. Similar problems have been revealed
in Tesla Autopilot [27]. One way to mitigate them is to steer
the AV to the adjacent lane (if available) to avoid the accident.

Example 5 in Fig. 10 illustrates a case in which an AV
interprets two vehicles that are side-by-side as one vehicle.
Fig 13 shows time-evolving simulation views of this scenario.
As seen, two NPCs are moving ahead at a very short distance.
The AV sees the two NPCs as just one, which it thinks is
located in the adjacent lane. Consequently, the AV continues
to accelerate until it is too late to prevent a collision. This
scenario occurs because of problems in the Perception module

9

(a) Time 1 (b) Time 2 (c) Time 3

(d) Time 1 (e) Time 2 (f) Time 3
Figure 13: Example 5: Time-evolving simulation view (Top
is simulation view, bottom is Apollo view).

of Apollo. Improving the accuracy of DNN models may help
prevent similar accidents.

Recall that the safety violations AV-FUZZER reports based on
the safety constraints (Section III-B1) are all at-fault accidents
where the AV breaks traffic rules and is liable. As can be
seen in Figure 10, these accidents are caused by either the
wrong actions taken by the AV or a lack of capability in
the AV, as a result of ADS deficiencies. We review all these
accidents and find that they are indeed avoidable by taking
precautionary actions (i.e., brake or switch to emergency lanes)
or by improving the perception module.

VI. RELATED WORK

A. AV Software Testing

Many existing studies on assessing AV robustness are geared
toward testing and improving certain components (i.e., AI
modules, etc.) in ADSs [2], [28]–[35]. Fremont et al. [2]
propose a probabilistic programming language for the design
and analysis of deep-learning-based perception modules in AVs.
Pei et al. [29] propose an automated whitebox testing method
for safety-critical, deep-learning components, based on neuron
coverage and cross-referencing oracles. Calo et al. [36] propose
sequential and combined approaches to search for alternative
configurations that avoid accidents for the path-planning module
of AVs. While these studies are useful in improving certain AV
modules, an end-to-end ADS consists of many safety-critical
components that work together synergistically. Therefore, it is
critically important to assess ADS software end-to-end, as we
do in this work, to understand the deficiencies of the system.

Some recent studies focus on bridging conventional testing
techniques to AVs [4], [5], [7], [35], [37]–[39]. Corso et
al. [7] leverage adaptive stress-testing techniques to find both
vulnerabilities and failures in AVs. They perturb the trajectories
of traffic participants and inject noise into the input sensor
data of AVs to cause accidents. Hauer et al. [25] design
fitness functions for optimization algorithms in AV testing.
Klück et al. [39] investigate a search-based optimization
algorithm for testing ADAS. Abdessalem et al. [34] use a
learnable evolutionary algorithm to stress test vision-based
control systems. While these studies provide useful insights
into AV testing, they do not focus on improving the efficiency
and comprehensiveness of the testing. Further, their evaluations
are done on much simpler AV programs than an industrial-
grade ADS with high-fidelity simulation; hence they provide

limited insights into the deficiencies of real-world ADSs. In
contrast, our work proposes a complete, yet practical and
efficient testing framework for industry-grade AVs. We further
report and analyze the safety-critical deficiencies discovered
in Apollo.
B. AV Vulnerability and Fault Injection

Fault injection techniques have been used to assess the
vulnerability of computer systems [5], [13], [40], [41]. Recently,
Jha et al. [13] have demonstrated a fast fault injection
framework for AVs that uses a Bayesian network to find
the vulnerabilities of an ADS under transient faults. While
the technique offers orders of magnitude speed-up in finding
critical faults, the focus is on hardware-fault vulnerabilities of
AVs rather than on intrinsic design deficiencies of the system.

There has been a large body of work in the area of
AV security [29], [42]–[44]. Most of it focuses on finding
adversarial examples to mislead AV perception systems. Boloor
et al. [42] demonstrate vulnerabilities by adding scratch marks
on roads and tricking AVs to steer out of lanes. Chernikova et
al. [43] show that a carefully designed minor modification
of camera images can lead to misclassification of DNNs
to the classes of the attackers’ choice. While these studies
highlight the safety concerns of AVs, they focus on the security
vulnerabilities of AVs under attack rather than on finding
intrinsic ADS software deficiencies or bugs.
C. AV Defensive Driving

Another research direction in AV safety is investigating
how AVs can behave defensively in response to potential
dangers. Zhan et al. [45] propose a unified planning framework
under uncertainty in urban driving environments for AVs.
Abeysirigoonawardenal et al. [6] use Bayesian optimization
to find adversarial NPC behaviors that crash AVs. They look
for collisions, regardless of whether they are avoidable or
are infractions of the AV, to formulate defensive AV driving
strategies. In our study, we look for design deficiencies of the
ADS with respect to safety violations.

VII. CONCLUSION

We propose AV-FUZZER, an automated fuzzing framework
that can generate AV safety violation scenarios. We demonstrate
AV-FUZZER on an industrial-grade AV platform, Baidu Apollo,
and find safety violation scenarios in a timely manner. These
safety violations are traceable to design deficiencies in Apollo.
We characterize the deficiencies and discuss their overarching
causes. VIII. ACKNOWLEDGEMENT

This work was supported in part by the Natural Sciences and
Engineering Research Council of Canada (NSERC) Postdoc-
toral Fellowship, the National Science Foundation (NSF) under
Grant No.1535070, 1547249, CNS 18-1667, Sandia National
Lab contract No.1951381, and IBM PhD Fellowship. We thank
NVIDIA Corporation for equipment donation. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the NSERC, NSF, Sandia, NVIDIA or
IBM.

10

REFERENCES

[1] Carla. The carla autonomous driving challenge. [Online]. Available:
https://carlachallenge.org/

[2] D. J. Fremont, T. Dreossi, S. Ghosh, X. Yue, A. L. Sangiovanni-
Vincentelli, and S. A. Seshia, “Scenic: a language for scenario specifica-
tion and scene generation,” in Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation.
ACM, 2019, pp. 63–78.

[3] A. C. Madrigal, “Inside waymo’s secret world for training self-driving
cars,” The Atlantic, vol. 23, 2017.

[4] R. Lee, O. J. Mengshoel, A. Saksena, R. Gardner, D. Genin, J. Silbermann,
M. Owen, and M. J. Kochenderfer, “Adaptive stress testing: Finding fail-
ure events with reinforcement learning,” arXiv preprint arXiv:1811.02188,
2018.

[5] M. Koren, S. Alsaif, R. Lee, and M. J. Kochenderfer, “Adaptive stress
testing for autonomous vehicles,” in 2018 IEEE Intelligent Vehicles
Symposium (IV). IEEE, 2018, pp. 1–7.

[6] Y. Abeysirigoonawardena, F. Shkurti, and G. Dudek, “Generating
adversarial driving scenarios in high-fidelity simulators,” in International
Conference on Robotics and Automation (ICRA), 2019.

[7] A. Corso, P. Du, K. Driggs-Campbell, and M. J. Kochenderfer, “Adaptive
stress testing with reward augmentation for autonomous vehicle validatio,”
in 2019 IEEE Intelligent Transportation Systems Conference (ITSC).
IEEE, 2019, pp. 163–168.

[8] F. Zhu, L. Ma, X. Xu, D. Guo, X. Cui, and Q. Kong, “Baidu
apollo auto-calibration system-an industry-level data-driven and learning
based vehicle longitude dynamic calibrating algorithm,” arXiv preprint
arXiv:1808.10134, 2018.

[9] Baidu. Baidu apollo github repository. [Online]. Available: https:
//github.com/ApolloAuto/apollo

[10] ——. Baidu apollo autonomous vehicle road test report.
[Online]. Available: https://www.globenewswire.com/news-
release/2019/04/03/1796503/0/en/Baidu-Apollo-Autonomous-Driving-
Technological-Leadership-Recognized-by-China-s-First-Autonomous-
Vehicle-Road-Test-Report.html

[11] M. F. Gasgoo. Baidu apollo given another 20 licenses by
beijing for autonomous car road tests. [Online]. Available: http:
//autonews.gasgoo.com/china_news/70015513.html

[12] C. DMV. Testing of autonomous vehicles with a driver. [Online]. Avail-
able: https://www.dmv.ca.gov/portal/dmv/detail/vr/autonomous/testing

[13] S. Jha, S. Banerjee, T. Tsai, S. K. S. Hari, M. B. Sullivan, Z. T.
Kalbarczyk, S. W. Keckler, and R. K. Iyer, “Ml-based fault injection for
autonomous vehicles: A case for bayesian fault injection,” in 2019 49th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), June 2019, pp. 112–124.

[14] S. J. Julier and J. K. Uhlmann, “New extension of the Kalman filter
to nonlinear systems,” in Signal pfrocessing, sensor fusion, and target
recognition VI, vol. 3068. International Society for Optics and Photonics,
1997, pp. 182–194.

[15] N. Narayanamurthy, K. Pattabiraman, and M. Ripeanu, “Finding
resilience-friendly compiler optimizations using meta-heuristic search
techniques,” in 2016 12th European Dependable Computing Conference
(EDCC). IEEE, 2016, pp. 1–12.

[16] R. L. Haupt, “Optimum population size and mutation rate for a simple
real genetic algorithm that optimizes array factors,” in IEEE Antennas
and Propagation Society International Symposium. Transmitting Waves
of Progress to the Next Millennium. 2000 Digest. Held in conjunction
with: USNC/URSI National Radio Science Meeting (C, vol. 2. IEEE,
2000, pp. 1034–1037.

[17] LG. Lgsvl simulator. [Online]. Available: https://www.lgsvlsimulator.com/
[18] S. Alvarez, “Research group demos why tesla autopilot could crash into

a stationary vehicle,” 2018.
[19] C. Ziegler, “A google self-driving car caused a crash for the first time,”

The Verge, 2016.
[20] S. M. Erlien, “Shared vehicle control using safe driving envelopes for

obstacle avoidance and stability,” Ph.D. dissertation, Stanford University,
2015.

[21] J. Suh, B. Kim, and K. Yi, “Design and evaluation of a driving mode
decision algorithm for automated driving vehicle on a motorway,” IFAC-
PapersOnLine, vol. 49, no. 11, pp. 115–120, 2016.

[22] A. Konak, D. W. Coit, and A. E. Smith, “Multi-objective optimization
using genetic algorithms: A tutorial,” Reliability Engineering & System
Safety, vol. 91, no. 9, pp. 992–1007, 2006.

[23] K. Azizzadenesheli, E. Brunskill, and A. Anandkumar, “Efficient
exploration through bayesian deep q-networks,” in 2018 Information
Theory and Applications Workshop (ITA). IEEE, 2018, pp. 1–9.

[24] Z. C. Lipton, J. Gao, L. Li, X. Li, F. Ahmed, and L. Deng, “Efficient
exploration for dialog policy learning with deep bbq networks & replay
buffer spiking,” CoRR abs/1608.05081, 2016.

[25] F. Hauer, A. Pretschner, and B. Holzmüller, “Fitness functions for testing
automated and autonomous driving systems,” in International Conference
on Computer Safety, Reliability, and Security. Springer, 2019, pp. 69–84.

[26] M. Lones, “Sean luke: essentials of metaheuristics,” 2011.
[27] S. Alvarez, “Research group demos why Tesla Autopilot could crash

into a stationary vehicle,” https://www.teslarati.com/tesla-research-group-
autopilot-crash-demo/, June 2018.

[28] C. E. Tuncali, G. Fainekos, H. Ito, and J. Kapinski, “Simulation-based
adversarial test generation for autonomous vehicles with machine learning
components,” in 2018 IEEE Intelligent Vehicles Symposium (IV). IEEE,
2018, pp. 1555–1562.

[29] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated whitebox
testing of deep learning systems,” in Proceedings of the 26th Symposium
on Operating Systems Principles. ACM, 2017, pp. 1–18.

[30] G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer,
and S. W. Keckler, “Understanding Error Propagation in Deep Learning
Neural Network (DNN) Accelerators and Applications,” in Proc. Inter-
national Conf. for High Performance Computing, Networking, Storage
and Analysis, 2017, pp. 8:1–8:12.

[31] Z. Chen, G. Li, K. Pattabiraman, and N. DeBardeleben, “Binfi: an
efficient fault injector for safety-critical machine learning systems,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. ACM, 2019, p. 69.

[32] G. Li, K. Pattabiraman, and N. DeBardeleben, “Tensorfi: A configurable
fault injector for tensorflow applications,” in 2018 IEEE International
Symposium on Software Reliability Engineering Workshops (ISSREW).
IEEE, 2018, pp. 313–320.

[33] R. Ben Abdessalem, S. Nejati, L. C. Briand, and T. Stifter, “Testing
advanced driver assistance systems using multi-objective search and
neural networks,” in Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering, 2016, pp. 63–74.

[34] R. B. Abdessalem, S. Nejati, L. C. Briand, and T. Stifter, “Testing
vision-based control systems using learnable evolutionary algorithms,” in
2018 IEEE/ACM 40th International Conference on Software Engineering
(ICSE). IEEE, 2018, pp. 1016–1026.

[35] A. Gambi, M. Mueller, and G. Fraser, “Automatically testing self-driving
cars with search-based procedural content generation,” in Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing
and Analysis, 2019, pp. 318–328.

[36] A. Calo, P. Arcaini, S. Ali, F. Hauer, and I. Fuyuki, “Generating avoidable
collision scenarios for testing autonomous driving systems,” in IEEE Intl.
Conf. on SW Testing, Verification and Validation, 2020.

[37] F. Hauer, T. Schmidt, B. Holzmüller, and A. Pretschner, “Did we test
all scenarios for automated and autonomous driving systems?” in 2019
IEEE Intelligent Transportation Systems Conference (ITSC). IEEE,
2019, pp. 2950–2955.

[38] I. Majzik, O. Semeráth, C. Hajdu, K. Marussy, Z. Szatmári, Z. Micskei,
A. Vörös, A. A. Babikian, and D. Varró, “Towards system-level testing
with coverage guarantees for autonomous vehicles,” in 2019 ACM/IEEE
22nd International Conference on Model Driven Engineering Languages
and Systems (MODELS). IEEE, 2019, pp. 89–94.

[39] F. Klück, M. Zimmermann, F. Wotawa, and M. Nica, “Genetic algorithm-
based test parameter optimization for adas system testing,” in 2019
IEEE 19th International Conference on Software Quality, Reliability and
Security (QRS). IEEE, 2019, pp. 418–425.

[40] G. Li and K. Pattabiraman, “Modeling input-dependent error propagation
in programs,” in Proceedings of the International Conference on
Dependable Systems and Networks (DSN), 2018.

[41] G. Li, K. Pattabiraman, C.-Y. Cher, and P. Bose, “Understanding
error propagation in gpgpu applications,” in SC’16: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 2016, pp. 240–251.

[42] A. Boloor, K. Garimella, X. He, C. Gill, Y. Vorobeychik, and X. Zhang,
“Attacking vision-based perception in end-to-end autonomous driving
models,” arXiv preprint arXiv:1910.01907, 2019.

[43] A. Chernikova, A. Oprea, C. Nita-Rotaru, and B. Kim, “Are self-driving
cars secure? evasion attacks against deep neural networks for steering
angle prediction,” arXiv preprint arXiv:1904.07370, 2019.

11

https://carlachallenge.org/
https://github.com/ApolloAuto/apollo
https://github.com/ApolloAuto/apollo
https://www.globenewswire.com/news-release/2019/04/03/1796503/0/en/Baidu-Apollo-Autonomous-Driving-Technological-Leadership-Recognized-by-China-s-First-Autonomous-Vehicle-Road-Test-Report.html
https://www.globenewswire.com/news-release/2019/04/03/1796503/0/en/Baidu-Apollo-Autonomous-Driving-Technological-Leadership-Recognized-by-China-s-First-Autonomous-Vehicle-Road-Test-Report.html
https://www.globenewswire.com/news-release/2019/04/03/1796503/0/en/Baidu-Apollo-Autonomous-Driving-Technological-Leadership-Recognized-by-China-s-First-Autonomous-Vehicle-Road-Test-Report.html
https://www.globenewswire.com/news-release/2019/04/03/1796503/0/en/Baidu-Apollo-Autonomous-Driving-Technological-Leadership-Recognized-by-China-s-First-Autonomous-Vehicle-Road-Test-Report.html
http://autonews.gasgoo.com/china_news/70015513.html
http://autonews.gasgoo.com/china_news/70015513.html
https://www.dmv.ca.gov/portal/dmv/detail/vr/autonomous/testing
https://www.lgsvlsimulator.com/
https://www.teslarati.com/tesla-research-group-autopilot-crash-demo/
https://www.teslarati.com/tesla-research-group-autopilot-crash-demo/

[44] V. L. Thing and J. Wu, “Autonomous vehicle security: A taxonomy of
attacks and defences,” in 2016 IEEE International Conference on Internet
of Things (iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom)
and IEEE Smart Data (SmartData). IEEE, 2016, pp. 164–170.

[45] W. Zhan, C. Liu, C.-Y. Chan, and M. Tomizuka, “A non-conservatively
defensive strategy for urban autonomous driving,” in 2016 IEEE 19th
International Conference on Intelligent Transportation Systems (ITSC).
IEEE, 2016, pp. 459–464.

12

