

P-HGRMS: A Parallel Hypergraph Based Root Mean Square Algorithm for Salt and Pepper Image Denoising

Tejaswi Agarwal, Saurabh Jha and B. Rajesh Kanna School of Computing Sciences and Engineering, VIT University Chennai, India

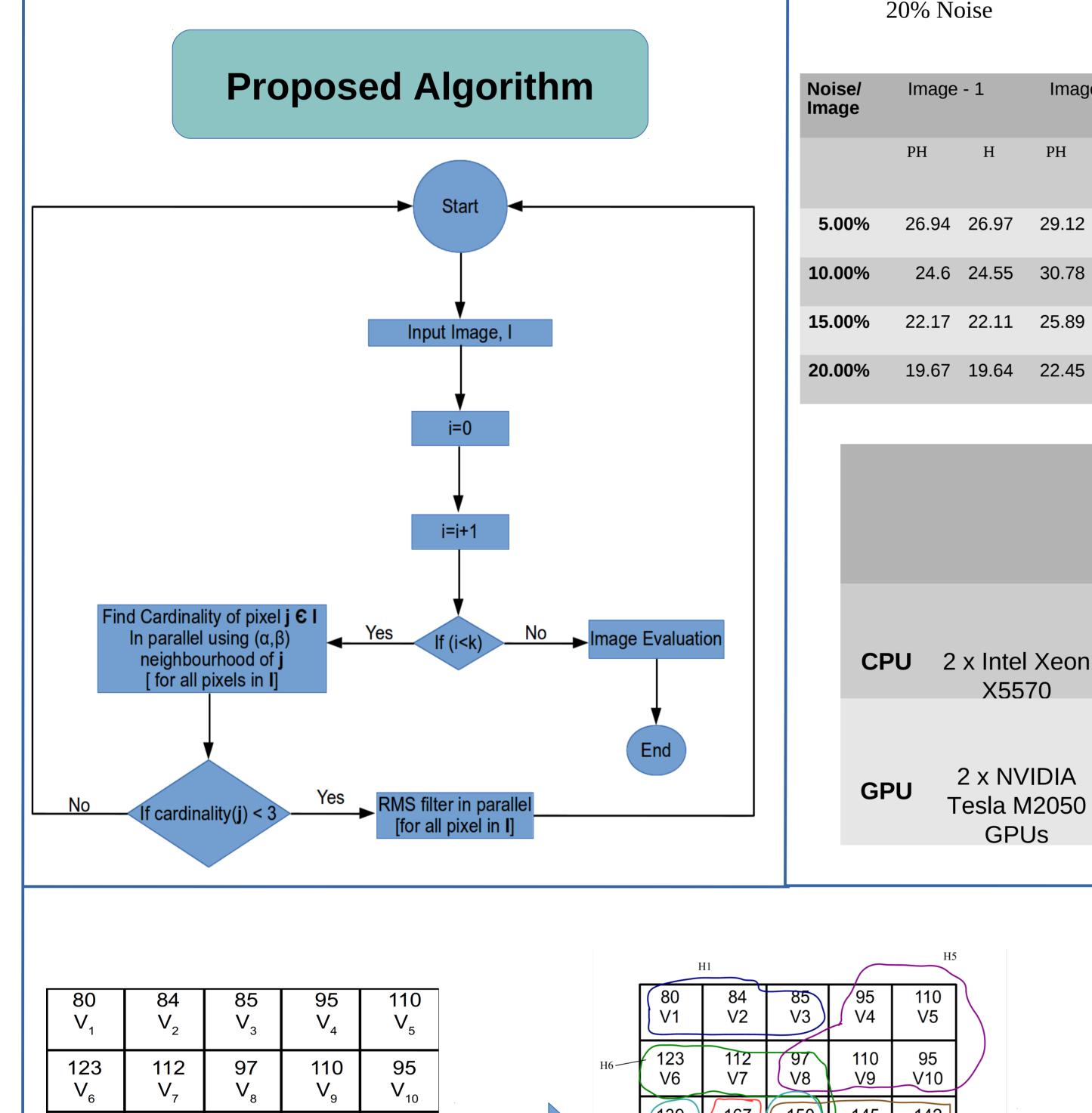
tejaswi.agarwal2010@vit.ac.in, saurabh.jha2010@vit.ac.in, rajeshkanna.b@vit.ac.in

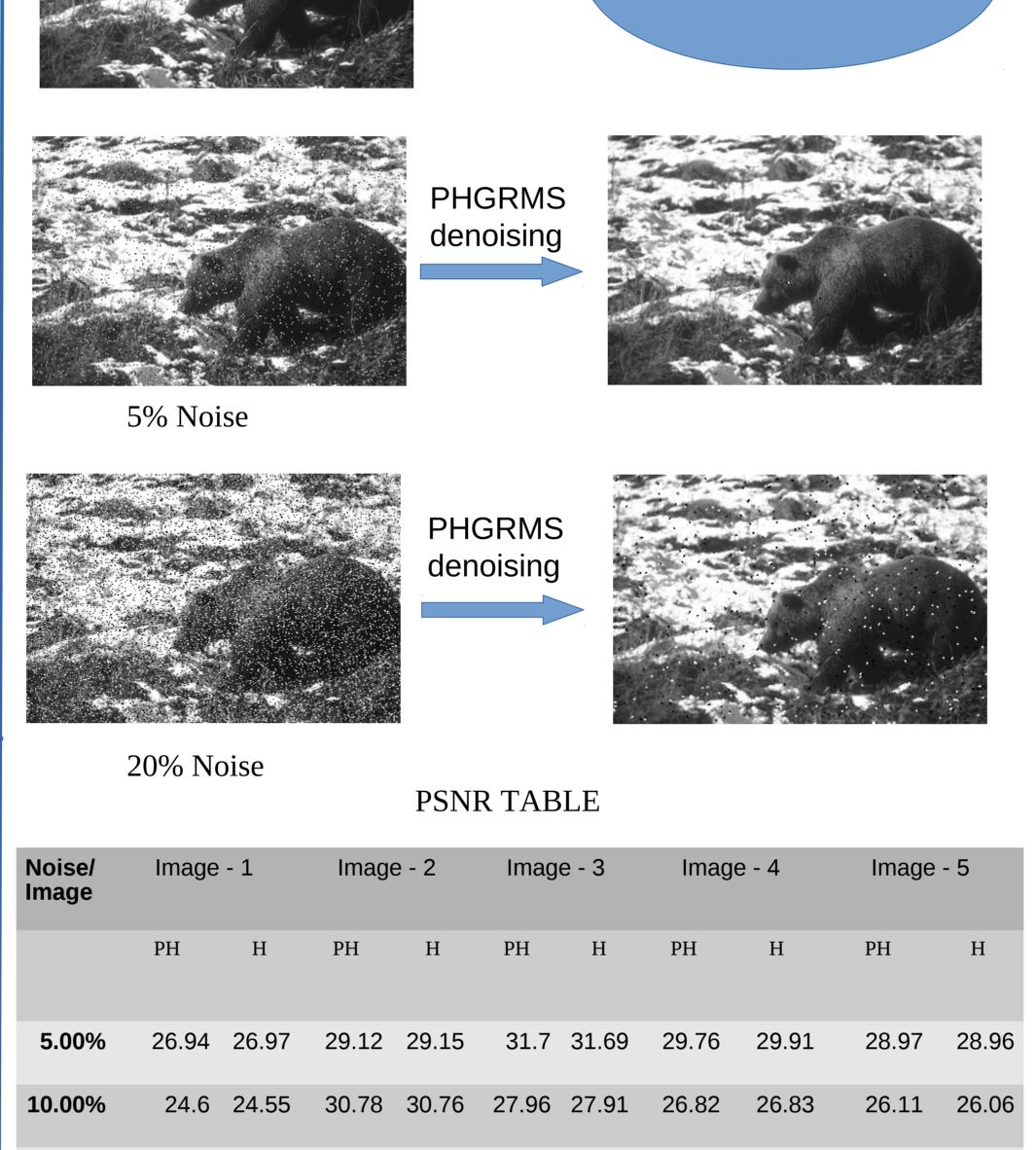
Abstract	Results	1200	PHGRMS VS HGRMS Performance GPU CPU
This poster presents a parallel Salt and Pepper (SP) noise removal		1000	-
algorithm in a gray level digital image based on the Hypergraph Based Root Mean Square (HGRMS) approach. HGRMS is generic algorithm for identifying noisy pixels in any digital image using a two		800	-

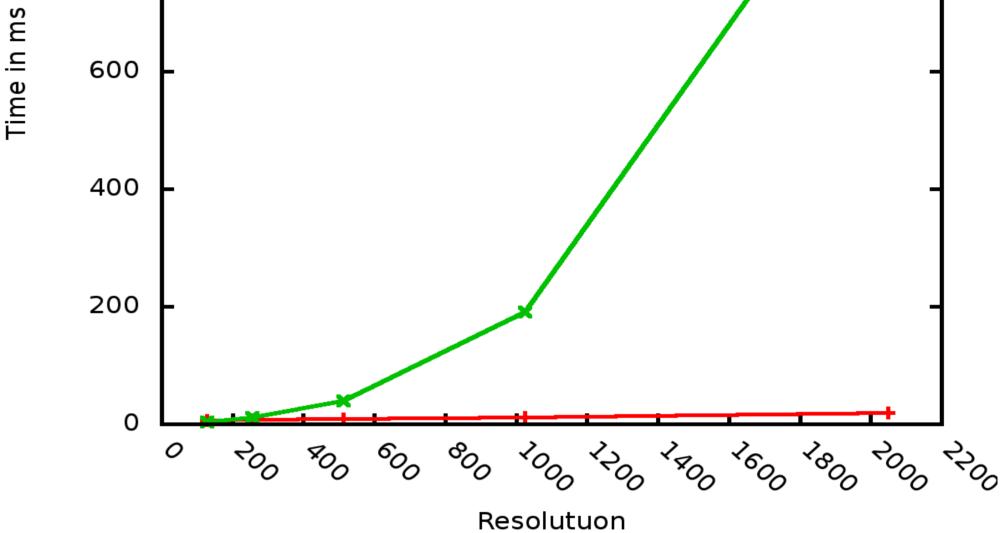
level hierarchical serial approach. However, for SP noise removal, we reduce this algorithm to a parallel model by introducing a cardinality matrix and an iteration factor, k, which helps us reduce the dependencies in the existing approach. We compare and evaluate the performance characteristics and PSNR values of the proposed P-HGRMS algorithm with the existing HGRMS algorithm. Results with the proposed method show consistency in noise removal with a considerable increase in performance.

1. To parallelize HGRMS algorithm

2. To maintain the noise removal efficiency of the HGRMS algorithm in P-HGRMS







As shown above even with a small image size of 128 X 128 we observe a speed up of 6x. As we scale higher images, the parallel CUDA implementation is 18x faster with an image resolution of 2048x2048.

1. P-HGRMS maintains the noise removal efficiency of HGRMS algorithm as evident from PSNR values.

2. It outperforms HGRMS by 6 to 18 times (6x - 18x) in computational efficiency.

	22.17	22.11	25.89	25.86	24.3	24.31	23.64	23.63	23.46	23.39
	19.67	19.64	22.45	22.4	21.19	21.18	20.66	20.62	20.76	20.74
					ber o bres	of Clo	ock Spe (MHz)	eed	Memory Clock (MHz)	/
ינ	J 2	x Intel X557			2		2660		1600	
າເ		2 x NV esla M GPL	2050	4	48		1150		1546	

Future Work

1. Determining the value of iteration factor, k based on the input image.

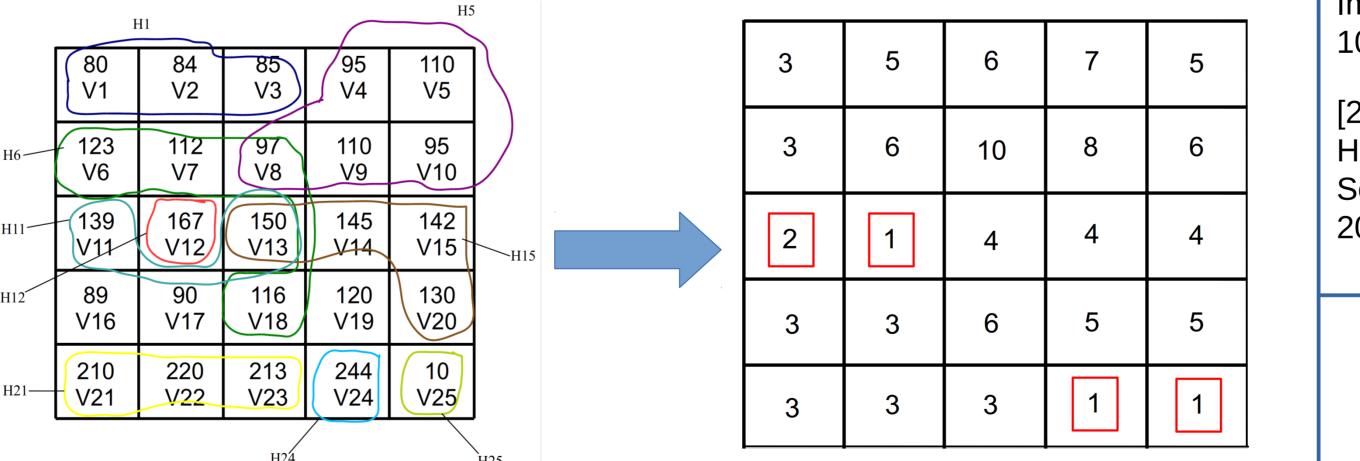
2. Generalizing the algorithm for all types of Gaussian noise.

3. Testing the algorithm with color images.

References

[1] K. Kannan, B. Rajesh Kanna, and C. Aravindan (2010), Root mean square filter for noisy images based on hypergraph model, Image and Vision Computing, 28 (9), 1329-1338, Elsevier, DOI: 10.1016/j.imavis.2010.01.013, 5- Year impact factor- 1.84

[2] D. Martin, C. Fowlkes, D. Tal, and J. Malik, "A Database of Human Segmented Natural Images and its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics", ICCV 2001. (Berkeley Segmentation Dataset)



v 16	v 17	∨ 18	v 19	v 20
210 V.	220 V	213 V.	244 V	10 V
21	• 22	• 23	* 24	25

150

 V_{13}

116

 \mathbf{V}

167

 V_{12}

90

\/

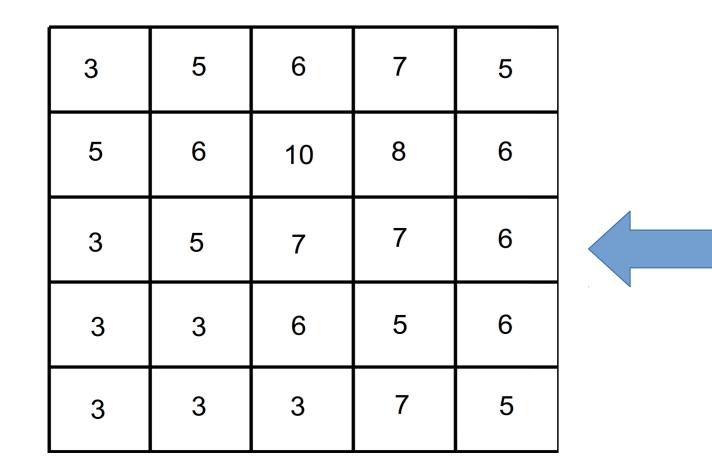
139

 V_{11}

89

 \mathbf{V}

1. Input Image Set, Geometrical parameter =15 Topological parameter =2



142

 V_{15}

130

V

145

 V_{14}

120

V

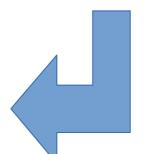
5. Continue from step 2. At this stage no isolated hyperedges were found. So STOP.

2. Construct Image neighbourhood hypergraph. Not all hyperedges marked here.

80	84	85	95	110
V ₁	V ₂	V ₃	V ₄	V ₅
123	112	97	110	95
V ₆	V ₇	V ₈	V ₉	V ₁₀
140	142	150	145	142
V ₁₁	V ₁₂	V ₁₃	V ₁₄	V ₁₅
89	90	116	120	130
V ₁₆	V ₁₇	V ₁₈	V ₁₉	V ₂₀
210	220	213	145	148
V ₂₁	V ₂₂	V ₂₃	V ₂₄	V ₂₅

4. $f(x,y) = \sqrt{\frac{1}{mn} \sum_{s,t} (g(s,t))^2} \quad (s,t) \in S_{x,y}$

3. Find cardinality and mark isolated hyperedges with cardinality less than 3



About The Authors

Tejaswi Agarwal junior year is а undergraduate student majoring in Computer Science and Engineering. His research interests are Parallel Computing, Computer Architecture, and Multi-core Systems. Email tejaswi.agarwal2010@vit.ac.in

Saurabh Jha is a junior year undergraduate student majoring in Computer Science and Engineering. His research interests are The Parallel Computing, Heterogeneous Systems Distributed Computing. Email and Web saurabh.jha2010@vit.ac.in

Cloud Rajesh Kanna B is a professor at VIT University, India. His research interests are Image Processing and its applications. Email rajeshkanna.b@vit.ac.in

authors acknowledge Amazon Services for providing EC2 their services for testing and analysis of the proposed algorithm.