
P-HGRMS: A Parallel Hypergraph Based Root Mean
Square Algorithm for Image Denoising

Tejaswi Agarwal
Undergraduate Student

VIT University, Chennai, India

tejaswi.agarwal2010@vit.ac.in

Saurabh Jha
Undergraduate Student

VIT University, Chennai, India

saurabh.jha2010@vit.ac.in

B. Rajesh Kanna
Advisor

VIT University, Chennai, India

rajeshkanna.b@vit.ac.in

ABSTRACT
This paper presents a parallel Salt and Pepper (SP) noise

removal algorithm in a grey level digital image based on the

Hypergraph Based Root Mean Square (HGRMS) approach.

HGRMS is generic algorithm for identifying noisy pixels in any

digital image using a two level hierarchical serial approach.

However, for SP noise removal, we reduce this algorithm to a

parallel model by introducing a cardinality matrix and an

iteration factor, k, which helps us reduce the dependencies in the

existing approach. We also observe that the performance of the

serial implementation is better on smaller images, but once the

threshold is achieved in terms of image resolution, its

computational complexity increases drastically. We test P-

HGRMS using standard images from the Berkeley Segmentation

dataset on NVIDIAs Compute Unified Device Architecture

(CUDA) for noise identification and attenuation. We also

compare the noise removal efficiency of the proposed algorithm

using Peak Signal to Noise Ratio (PSNR) to the existing

approach. P-HGRMS maintains the noise removal efficiency

and outperforms its sequential counterpart by 6 to 18 times (6x -

18x) in computational efficiency.

Categories and Subject Descriptors: I.3

[Computer Graphics]: Hardware Architecture –Graphics

Processor, Parallel Processing

Keywords: Parallel Processing, GPGPU, Salt and Pepper

Noise

1. INTRODUCTION
To overcome limitations in the existing spatial image filtering

and noise removal algorithms, Kanna [1] proposed the HGRMS

technique which uses Hypergraph based Root Mean Square

approach for Salt and Pepper (SP) noise removal. HGRMS is a

generic approach, which models the input image using Image

Neighborhood hypergraph (INHG) parameters alpha, beta (α, β)

to identify the noisy pixels. The identification of noisy

hyperedge (NH) involves two sequential operations such that the

NH should satisfy the property of isolated hyperedge and its

cardinality equal to one. This causes severe

performance penalties in computation.

2. PROPOSED ALGORITHM
Our noise reduction algorithm works on the following criterion:

binary classification of hyperedges of an image (H0 noisy

hyperedge and H1 no noisy hyperedge) and filtering the noisy

parts. To modify the existing algorithm we propose the use of a

cardinality matrix, and updating the image to remove the noise

based on the values in the cardinality matrix. The cardinality

matrix is generated based on the alpha, beta (α, β) neighborhood

of the pixels in an image. The cardinality matrix serves as a

platform to exploit parallelism using CUDA threads to update

the original image with the Root Mean Square value of its

corresponding beta neighborhood pixels. We preserve the image

adaptive nature of the existing algorithm by introducing a new

parameter, known as iteration factor, k. In our approach, to

parallelize the algorithm, we iterate over the modified pixel

values until there is no alpha-beta noise remaining in the image

based on the iteration factor.

Algorithm 1 illustrated below is used to form the cardinality

matrix of the image I. The cardinality matrix is formed by

finding the cardinality of each pixel, i.e. counting the number of

closed neighborhood alpha-beta pixels with respect to that pixel

in I. The cardinality number of each pixel is saved in another

matrix, which we call the cardinality matrix, C.

Each CUDA thread computes the cardinality value of a pixel in

image in parallel with other CUDA threads depending on its

threadIdx and blockIdx value. Thus Cardinality matrix, C is

generated in parallel.

Algorithm 1: findIsolatedPixels to generate cardinality matrix

findIsolatedPixels(*d_image, *d_card, col, row)

1. do in parallel on each thread

2. c := blockDim.x*blockIdx.x+threadIdx.x

3. r := blockDim.y*blockIdx.y+threadIdx.y

4. if r<row and c<col

5. for i:=r-beta to r+beta+1

6. for j:=c-beta to c+beta+1

7. if i<row and i>=0 and j<col and j>=0

8. if d_image[i*col+j] < d_image[r*col+c]+alpha and

d_image[i*col+j]>d_image[r*col+c]-alpha

9. d_card[i*col+j]:= d_card + 1

10. end do

11. cudaThreadSynchronize()

Algorithm 2: Remove noise for image enhancement

removeNoise(*d_image,*d_tempImage, *d_card, col, row)

1. j=blockDim.x*blockIdx.x+threadIdx.x;

2. i=blockDim.y*blockIdx.y+threadIdx.y;

3. if i<row and j<col

4. sum:=0

5. pix_count:=0

6. flag:=0

7. if d_card[i*col+j]<=2

8. for i1:=i-beta to i1<i+beta+1

9. for j1:=j-beta to j1<j+beta+1

10. pix_count = pix_count + 1

11. if i1<row and i1>=0 and j1<col and j1>=0

12. if not (d_image[i1*col+j1] < d_image[i*col+j]+alpha+1 and

d_image[i1*col+j1]>d_image[i*col+j]-alpha

)

13. sum = sum + d_image[i1*col+j1] * d_image[i1*col+j1]

14. flag = flag + 1

15. if flag>pix_count-3

16. d_image'[i*col+j]=sum/flag

17. cudaThreadSynchronize()

In algorithm 2, for each cell in C, if cardinality is found to be

less than the threshold value, 3, we find the open neighborhood

alpha-beta of the pixel in I, and count the number of pixels

which exceed this value. If the count exceeds threshold value,

we replace identified noisy pixel by Root Mean Square value of

open neighborhood of this pixel in a temporary image matrix, I'.

The temporary matrix enables us to remove data race conditions.

Once all the CUDA threads are synchronized, we copy the

temporary image matrix to original image matrix. We repeat the

above steps until no further noise remains with respect to alpha

and beta. We iteratively call algorithm 1 and algorithm 2 one

after another until no further noise remains with respect to alpha

and beta.

The iteration factor, k, helps us to control the number of

iterations. The number of times algorithm 1 and algorithm 2 are

called in succession depends on this iteration factor, k. This

factor is necessary to preserve the image adaptive nature of

HGRMS algorithm. The value of k is dependent on the INHG

parameter, β. For our computation, we use k=5.

3. EXPERIMENTAL RESULTS
The existing algorithm HGRMS was implemented and tested on

a system with an Intel Core i5 Processor with 4 GB of RAM.

For the GPU implementation we used and Amazon AWS

cluster, having 2 X NVIDIA Tesla M2050 GPUs having 1690

GB of instance storage and 22 GiB of memory. The images are

acquired from the Berkeley Segmentation dataset [2].

Table 1 shown above gives us the run time of both algorithms

with image noise levels ranging from 5 % to 20 %. It is evident

from the results that a change in noise level does not

significantly impact the performance of the proposed algorithm.

This was expected as our algorithm is dependent on the size of

the image, irrespective of any other factor.

Restoration performance is quantitatively measured by the peak

signal-to-noise ratio (PSNR). Table 2 shown above compares

PSNR values of the existing HGRMS algorithm and the

proposed P-HGRMS algorithm.

Figure 1: (a) Original Image (b) 20% noise (c) Restored image

Figure 1 shows one sample (5.png) of the total five images used

for our analysis. The restored image (c) is formed using our

proposed PHGRMS algorithm.

As noted below, even with a small image size of 128 X 128 we

observe a speed up of 6x. The parallel CUDA implementation is

18x faster with an image resolution of 2048x2048.

Figure 2: Speedup of P-HGRMS compared to HGRMS

4. CONCLUSION:
In this paper, we proposed a two phase parallel algorithm for

noise filtering in images with preserving the image details. Our

results show that the proposed algorithm outperforms its existing

Hypergraph based root mean square approach. It is worth

mentioning that when images are contaminated with high SP

noise, the proposed scheme is able to clean images quiet

efficiently without loss of image details. The proposed algorithm

in this work is highly performance efficient as compared to its

serial implementation. Even at higher noise ranges of 20 % the

algorithm performed as efficiently as its serial counterpart.

This algorithm represents a very fast and promising approach in

denoising salt and pepper noise in digital images. Future work

includes reducing processing time further by testing with the

MPI implementation and superior hardware capabilities. We

also plan to devise a mechanism where the algorithm would

itself decide the iteration factor, k, based on the input image,

rather than a pre-defined iteration factor.

REFERENCES:
[1] K. Kannan, B. Rajesh Kanna, and C. Aravindan (2010),

Root mean square filter for noisy images based on

hypergraph model, Image and Vision Computing, 28 (9),

1329-1338, Elsevier, DOI: 10.1016/j.imavis.2010.01.013,

5- Year impact factor- 1.84

[2] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A Database

of Human Segmented Natural Images and its Application to

Evaluating Segmentation Algorithms and Measuring

Ecological Statistics”, ICCV 2001. (Berkeley Segmentation

Dataset)

http://www.cs.berkeley.edu/~fowlkes
http://www.cs.berkeley.edu/~doron
http://www.cs.berkeley.edu/~malik

