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ABSTRACT 
This paper presents a parallel Salt and Pepper (SP) noise 

removal algorithm in a grey level digital image based on the 

Hypergraph Based Root Mean Square (HGRMS) approach.  

HGRMS is generic algorithm for identifying noisy pixels in any 

digital image using a two level hierarchical serial approach. 

However, for SP noise removal, we reduce this algorithm to a 

parallel model by introducing a cardinality matrix and an 

iteration factor, k, which helps us reduce the dependencies in the 

existing approach. We also observe that the performance of the 

serial implementation is better on smaller images, but once the 

threshold is achieved in terms of image resolution, its 

computational complexity increases drastically. We test P-

HGRMS using standard images from the Berkeley Segmentation 

dataset on NVIDIAs Compute Unified Device Architecture 

(CUDA) for noise identification and attenuation.  We also 

compare the noise removal efficiency of the proposed algorithm 

using Peak Signal to Noise Ratio (PSNR) to the existing 

approach. P-HGRMS maintains the noise removal efficiency 

and outperforms its sequential counterpart by 6 to 18 times (6x - 

18x) in computational efficiency.   

Categories and Subject Descriptors: I.3 

[Computer Graphics]: Hardware Architecture –Graphics 

Processor, Parallel Processing  

Keywords: Parallel Processing, GPGPU, Salt and Pepper 

Noise 

1. INTRODUCTION 
To overcome limitations in the existing spatial image filtering 

and noise removal algorithms, Kanna [1] proposed the HGRMS 

technique which uses Hypergraph based Root Mean Square 

approach  for Salt and Pepper (SP) noise removal.  HGRMS is a 

generic approach, which models the input image using Image 

Neighborhood hypergraph (INHG)  parameters alpha, beta (α, β) 

to identify the noisy pixels. The identification of noisy 

hyperedge (NH) involves two sequential operations such that the 

NH should satisfy the property of isolated hyperedge and its 

cardinality equal to one.  This causes severe 

performance penalties in computation.  

2. PROPOSED ALGORITHM 
Our noise reduction algorithm works on the following criterion: 

binary classification of hyperedges of an image (H0 noisy 

hyperedge and H1 no noisy hyperedge) and filtering the noisy 

parts. To modify the existing algorithm we propose the use of a 

cardinality matrix, and updating the image to remove the noise 

based on the values in the cardinality matrix.   The cardinality 

matrix is generated based on the alpha, beta (α, β) neighborhood 

of the pixels in an image. The cardinality matrix serves as a 

platform to exploit parallelism using CUDA threads to update 

the original image with the Root Mean Square value of its 

corresponding beta neighborhood pixels.  We preserve the image  

 

adaptive nature of the existing algorithm by introducing a new 

parameter, known as iteration factor, k.  In our approach, to 

parallelize the algorithm, we iterate over the modified pixel 

values until there is no alpha-beta noise remaining in the image 

based on the iteration factor.  

Algorithm 1 illustrated below is used to form the cardinality 

matrix of the image I.  The cardinality matrix is formed by 

finding the cardinality of each pixel, i.e. counting the number of 

closed neighborhood alpha-beta pixels with respect to that pixel 

in I. The cardinality number of each pixel is saved in another 

matrix, which we call the cardinality matrix, C.  

Each CUDA thread computes the cardinality value of a pixel in 

image in parallel with other CUDA threads depending on its 

threadIdx and blockIdx value.  Thus Cardinality matrix, C is 

generated in parallel.  

Algorithm 1:  findIsolatedPixels to generate cardinality matrix 

findIsolatedPixels(*d_image, *d_card, col, row) 

1. do in parallel on each thread 

2. c := blockDim.x*blockIdx.x+threadIdx.x 

3. r := blockDim.y*blockIdx.y+threadIdx.y 

4. if r<row and c<col 

5.  for i:=r-beta to r+beta+1 

6.   for j:=c-beta to c+beta+1 

7.    if i<row and i>=0 and j<col and j>=0 

8.  if d_image[i*col+j] < d_image[r*col+c]+alpha and                                                                 

d_image[i*col+j]>d_image[r*col+c]-alpha 

9.                     d_card[i*col+j]:= d_card + 1 

10. end do 

11. cudaThreadSynchronize() 

 

Algorithm 2:  Remove noise for image enhancement  

removeNoise(*d_image,*d_tempImage, *d_card, col, row) 

1.  j=blockDim.x*blockIdx.x+threadIdx.x; 

2.  i=blockDim.y*blockIdx.y+threadIdx.y; 

3.  if i<row and j<col 

4. sum:=0 

5. pix_count:=0 

6. flag:=0 

7. if d_card[i*col+j]<=2 

8. for i1:=i-beta to i1<i+beta+1 

9.  for j1:=j-beta to j1<j+beta+1 

10.    pix_count = pix_count + 1 

11.  if i1<row  and i1>=0 and j1<col and j1>=0 



12.  if not (d_image[i1*col+j1] < d_image[i*col+j]+alpha+1 and 

d_image[i1*col+j1]>d_image[i*col+j]-alpha 

) 

13.     sum = sum + d_image[i1*col+j1] * d_image[i1*col+j1] 

14.                                     flag = flag + 1 

15. if flag>pix_count-3 

16.  d_image'[i*col+j]=sum/flag 

17.  cudaThreadSynchronize() 
 

In algorithm 2, for each cell in C, if cardinality is found to be 

less than the threshold value, 3, we find the open neighborhood 

alpha-beta of the pixel in I, and count the number of pixels 

which exceed this value. If the count exceeds threshold value, 

we replace identified noisy pixel by Root Mean Square value of 

open neighborhood of this pixel in a temporary image matrix, I'. 

The temporary matrix enables us to remove data race conditions.  

Once all the CUDA threads are synchronized, we copy the 

temporary image matrix to original image matrix. We repeat the 

above steps until no further noise remains with respect to alpha 

and beta. We iteratively call algorithm 1 and algorithm 2 one 

after another until no further noise remains with respect to alpha 

and beta.  

The iteration factor, k, helps us to control the number of 

iterations. The number of times algorithm 1 and algorithm 2 are 

called in succession depends on this iteration factor, k.  This 

factor is necessary to preserve the image adaptive nature of 

HGRMS algorithm. The value of k is dependent on the INHG 

parameter, β. For our computation, we use k=5.  

3. EXPERIMENTAL RESULTS 
The existing algorithm HGRMS was implemented and tested on 

a system with an Intel Core i5 Processor with 4 GB of RAM. 

For the GPU implementation we used and Amazon AWS 

cluster, having 2 X NVIDIA Tesla M2050 GPUs having 1690 

GB of instance storage and 22 GiB of memory. The images are 

acquired from the Berkeley Segmentation dataset [2].    

 

Table 1 shown above gives us the run time of both algorithms 

with image noise levels ranging from 5 % to 20 %. It is evident 

from the results that a change in noise level does not 

significantly impact the performance of the proposed algorithm. 

This was expected as our algorithm is dependent on the size of 

the image, irrespective of any other factor.  

 

Restoration performance is quantitatively measured by the peak 

signal-to-noise ratio (PSNR).  Table 2 shown above compares 

PSNR values of the existing HGRMS algorithm and the 

proposed P-HGRMS algorithm.  

   

Figure 1: (a) Original Image (b) 20% noise (c) Restored image 

Figure 1 shows one sample (5.png) of the total five images used 

for our analysis. The restored image (c) is formed using our 

proposed PHGRMS algorithm.  

As noted below, even with a small image size of 128 X 128 we 

observe a speed up of 6x.  The parallel CUDA implementation is 

18x faster with an image resolution of 2048x2048.  

 

Figure 2: Speedup of P-HGRMS compared to HGRMS 

4. CONCLUSION:  
In this paper, we proposed a two phase parallel algorithm for 

noise filtering in images with preserving the image details. Our 

results show that the proposed algorithm outperforms its existing 

Hypergraph based root mean square approach. It is worth 

mentioning that when images are contaminated with high SP 

noise, the proposed scheme is able to clean images quiet 

efficiently without loss of image details. The proposed algorithm 

in this work is highly performance efficient as compared to its 

serial implementation. Even at higher noise ranges of 20 % the 

algorithm performed as efficiently as its serial counterpart.   

This algorithm represents a very fast and promising approach in 

denoising salt and pepper noise in digital images. Future work 

includes reducing processing time further by testing with the 

MPI implementation and superior hardware capabilities. We 

also plan to devise a mechanism where the algorithm would 

itself decide the iteration factor, k, based on the input image, 

rather than a pre-defined iteration factor.  
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